Spaces:
Sleeping
Sleeping
| from vocca_ai.ai_response import generate_call_summary | |
| from vocca_ai.intent_classifier import classify_intent | |
| from vocca_ai.sentiment import analyze_sentiment | |
| from vocca_ai.db_handler import log_call, fetch_recent_calls | |
| import streamlit as st | |
| from vocca_ai.preprocess import priority_score | |
| from vocca_ai.intent_classifier import classify_intent | |
| import sys | |
| import os | |
| # this line ensures Python can find the 'models' directory | |
| sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
| st.title("π©Ί AI-Powered Call Insights for Vocca") | |
| st.write("Analyze patient calls, detect urgency, and generate AI-powered responses.") | |
| user_input = st.text_area("π Enter Call Transcript:", height=250) | |
| if user_input: | |
| intent = classify_intent(user_input) | |
| priority = priority_score(user_input) | |
| sentiment = analyze_sentiment(user_input) # Now using DistilBERT | |
| ai_response = generate_call_summary(user_input) # Now using Falcon-7B | |
| st.subheader(" Extracted Call Insights") | |
| st.write(f"**Intent:** {intent}") | |
| st.write(f"**Priority Level:** {priority}") | |
| st.write(f"**Sentiment:** {sentiment}") | |
| st.write(f"**AI Suggested Response:** {ai_response}") | |
| log_call(user_input, intent, priority, sentiment, ai_response) | |
| st.success("β Call successfully logged & analyzed!") | |
| if st.button("π Show Recent Calls"): | |
| calls = fetch_recent_calls() | |
| st.subheader("π Recent Call Logs") | |
| for row in calls: | |
| st.write(f" **Transcript:** {row[1]}") | |
| st.write(f" **Intent:** {row[2]}, **Priority:** {row[3]}, **Sentiment:** {row[4]}") | |
| st.write(f" **AI Response:** {row[5]}") | |
| st.write("---") | |