Spaces:
Runtime error
Runtime error
Avril Lalaine
commited on
Commit
·
bca8e6b
1
Parent(s):
cbee212
update
Browse files- Dockerfile +8 -0
- app.py +24 -24
Dockerfile
CHANGED
|
@@ -1,11 +1,19 @@
|
|
| 1 |
FROM python:3.9-slim
|
| 2 |
|
|
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
COPY . .
|
| 6 |
|
|
|
|
| 7 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
|
|
|
|
| 9 |
EXPOSE 8080
|
| 10 |
|
|
|
|
| 11 |
CMD ["python", "app.py"]
|
|
|
|
| 1 |
FROM python:3.9-slim
|
| 2 |
|
| 3 |
+
# Set working directory inside the container
|
| 4 |
WORKDIR /app
|
| 5 |
|
| 6 |
+
# Set the TRANSFORMERS_CACHE environment variable to a writable directory
|
| 7 |
+
ENV TRANSFORMERS_CACHE=/app/cache
|
| 8 |
+
|
| 9 |
+
# Copy the contents of your local directory to the working directory in the container
|
| 10 |
COPY . .
|
| 11 |
|
| 12 |
+
# Install dependencies
|
| 13 |
RUN pip install --no-cache-dir -r requirements.txt
|
| 14 |
|
| 15 |
+
# Expose port 8080 for your app
|
| 16 |
EXPOSE 8080
|
| 17 |
|
| 18 |
+
# Run the Flask app
|
| 19 |
CMD ["python", "app.py"]
|
app.py
CHANGED
|
@@ -1,7 +1,15 @@
|
|
|
|
|
| 1 |
from pathlib import Path
|
| 2 |
from flask import Flask, render_template, request, jsonify
|
| 3 |
-
from transformers import
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
app = Flask(__name__)
|
| 7 |
|
|
@@ -12,7 +20,6 @@ BERT_TOKENIZER = 'bert-base-uncased'
|
|
| 12 |
ROBERTA_TOKENIZER = 'jcblaise/roberta-tagalog-base'
|
| 13 |
ELECTRA_TOKENIZER = 'google/electra-base-discriminator'
|
| 14 |
|
| 15 |
-
|
| 16 |
LABELS = ["fake", "real"]
|
| 17 |
|
| 18 |
class Classifier:
|
|
@@ -54,19 +61,15 @@ class Classifier:
|
|
| 54 |
}
|
| 55 |
return result
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
@app.route('/')
|
| 60 |
def home():
|
| 61 |
return render_template('index.html')
|
| 62 |
|
| 63 |
@app.route('/detect', methods=['POST'])
|
| 64 |
def detect():
|
| 65 |
-
|
| 66 |
try:
|
| 67 |
data = request.get_json()
|
| 68 |
news_text = data.get('text')
|
| 69 |
-
|
| 70 |
model_chosen = data.get('model')
|
| 71 |
|
| 72 |
print(model_chosen)
|
|
@@ -77,50 +80,47 @@ def detect():
|
|
| 77 |
'message': 'No text provided'
|
| 78 |
}), 400
|
| 79 |
|
| 80 |
-
switch={
|
| 81 |
-
'nonaug-bert':'bert-nonaug',
|
| 82 |
-
'aug-bert':'bert-aug',
|
| 83 |
-
'nonaug-tagbert':'tagbert-nonaug',
|
| 84 |
-
'aug-tagbert':'tagbert-aug',
|
| 85 |
-
'nonaug-electra':'electra-nonaug',
|
| 86 |
-
'aug-electra':'electra-aug'
|
| 87 |
}
|
| 88 |
|
| 89 |
model_p = switch.get(model_chosen)
|
| 90 |
|
| 91 |
-
print("model",model_p)
|
| 92 |
-
|
| 93 |
-
MODEL_PATH = Path("D:\\Aplil\\skibidi-thesis\\webapp", model_p)
|
| 94 |
|
|
|
|
|
|
|
| 95 |
|
| 96 |
print(MODEL_PATH)
|
| 97 |
|
| 98 |
tokenizer = model_chosen.split("-")[1]
|
| 99 |
-
|
| 100 |
tokenizer_chosen = {
|
| 101 |
-
'bert':BERT_TOKENIZER,
|
| 102 |
-
'tagbert':ROBERTA_TOKENIZER,
|
| 103 |
-
'electra':ELECTRA_TOKENIZER
|
| 104 |
}
|
| 105 |
|
| 106 |
print(tokenizer)
|
| 107 |
|
| 108 |
-
classifier = Classifier(MODEL_PATH,DEVICE,tokenizer_chosen.get(tokenizer))
|
| 109 |
|
| 110 |
result = classifier.predict(news_text)
|
| 111 |
print(result['confidence_scores'])
|
| 112 |
-
|
| 113 |
|
| 114 |
if result['predicted_class'] == "fake":
|
| 115 |
out = "News Needs Further Validation"
|
| 116 |
else:
|
| 117 |
out = "News is Real"
|
| 118 |
|
| 119 |
-
|
| 120 |
return jsonify({
|
| 121 |
'status': 'success',
|
| 122 |
'prediction': out,
|
| 123 |
-
'confidence':result['confidence_scores']
|
| 124 |
})
|
| 125 |
|
| 126 |
except Exception as e:
|
|
|
|
| 1 |
+
import os
|
| 2 |
from pathlib import Path
|
| 3 |
from flask import Flask, render_template, request, jsonify
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import torch
|
| 6 |
+
import warnings
|
| 7 |
+
|
| 8 |
+
# Suppress FutureWarnings
|
| 9 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 10 |
+
|
| 11 |
+
# Set the TRANSFORMERS_CACHE to a writable directory
|
| 12 |
+
os.environ["TRANSFORMERS_CACHE"] = "./cache" # Modify this path if needed
|
| 13 |
|
| 14 |
app = Flask(__name__)
|
| 15 |
|
|
|
|
| 20 |
ROBERTA_TOKENIZER = 'jcblaise/roberta-tagalog-base'
|
| 21 |
ELECTRA_TOKENIZER = 'google/electra-base-discriminator'
|
| 22 |
|
|
|
|
| 23 |
LABELS = ["fake", "real"]
|
| 24 |
|
| 25 |
class Classifier:
|
|
|
|
| 61 |
}
|
| 62 |
return result
|
| 63 |
|
|
|
|
|
|
|
| 64 |
@app.route('/')
|
| 65 |
def home():
|
| 66 |
return render_template('index.html')
|
| 67 |
|
| 68 |
@app.route('/detect', methods=['POST'])
|
| 69 |
def detect():
|
|
|
|
| 70 |
try:
|
| 71 |
data = request.get_json()
|
| 72 |
news_text = data.get('text')
|
|
|
|
| 73 |
model_chosen = data.get('model')
|
| 74 |
|
| 75 |
print(model_chosen)
|
|
|
|
| 80 |
'message': 'No text provided'
|
| 81 |
}), 400
|
| 82 |
|
| 83 |
+
switch = {
|
| 84 |
+
'nonaug-bert': 'bert-nonaug',
|
| 85 |
+
'aug-bert': 'bert-aug',
|
| 86 |
+
'nonaug-tagbert': 'tagbert-nonaug',
|
| 87 |
+
'aug-tagbert': 'tagbert-aug',
|
| 88 |
+
'nonaug-electra': 'electra-nonaug',
|
| 89 |
+
'aug-electra': 'electra-aug'
|
| 90 |
}
|
| 91 |
|
| 92 |
model_p = switch.get(model_chosen)
|
| 93 |
|
| 94 |
+
print("model", model_p)
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
# Adjusting the model path to point to the correct folder inside 'webapp'
|
| 97 |
+
MODEL_PATH = Path("huggingface", "webapp", model_p) # Corrected model path to webapp folder
|
| 98 |
|
| 99 |
print(MODEL_PATH)
|
| 100 |
|
| 101 |
tokenizer = model_chosen.split("-")[1]
|
|
|
|
| 102 |
tokenizer_chosen = {
|
| 103 |
+
'bert': BERT_TOKENIZER,
|
| 104 |
+
'tagbert': ROBERTA_TOKENIZER,
|
| 105 |
+
'electra': ELECTRA_TOKENIZER
|
| 106 |
}
|
| 107 |
|
| 108 |
print(tokenizer)
|
| 109 |
|
| 110 |
+
classifier = Classifier(MODEL_PATH, DEVICE, tokenizer_chosen.get(tokenizer))
|
| 111 |
|
| 112 |
result = classifier.predict(news_text)
|
| 113 |
print(result['confidence_scores'])
|
|
|
|
| 114 |
|
| 115 |
if result['predicted_class'] == "fake":
|
| 116 |
out = "News Needs Further Validation"
|
| 117 |
else:
|
| 118 |
out = "News is Real"
|
| 119 |
|
|
|
|
| 120 |
return jsonify({
|
| 121 |
'status': 'success',
|
| 122 |
'prediction': out,
|
| 123 |
+
'confidence': result['confidence_scores']
|
| 124 |
})
|
| 125 |
|
| 126 |
except Exception as e:
|