Spaces:
Runtime error
Runtime error
acmc
commited on
Commit
·
36c5b68
1
Parent(s):
cdd672b
new model
Browse files- app.py +57 -43
- institutions.csv +0 -0
- model/.data-00000-of-00001 +2 -2
- model/.index +2 -2
- model/model_metadata.ampkl +2 -2
app.py
CHANGED
|
@@ -98,7 +98,8 @@ def process_user_input_concept(concept_chooser):
|
|
| 98 |
]
|
| 99 |
|
| 100 |
chosen_concepts = separate_concepts(concept_chooser)
|
| 101 |
-
|
|
|
|
| 102 |
for concept in chosen_concepts:
|
| 103 |
s = all_ids_institutions[:, 0]
|
| 104 |
p = np.array(["urn:acmcmc:unis:institution_related_to_concept"] * len(s))
|
|
@@ -107,29 +108,42 @@ def process_user_input_concept(concept_chooser):
|
|
| 107 |
array_of_triples = np.array([s, p, o]).T
|
| 108 |
|
| 109 |
scores = get_similarities_to_node(array_of_triples, model)
|
| 110 |
-
all_similarities
|
| 111 |
|
| 112 |
# Now, average the similarities
|
| 113 |
-
scores = np.stack(all_similarities, axis=0)
|
| 114 |
scores = np.mean(all_similarities, axis=0)
|
| 115 |
|
| 116 |
table_df = pd.DataFrame(
|
| 117 |
{
|
| 118 |
-
"
|
| 119 |
-
"similarity": scores.flatten(),
|
| 120 |
-
"
|
| 121 |
# "num_articles": all_ids_institutions[:, 2].astype(int),
|
| 122 |
}
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
|
| 127 |
return (
|
| 128 |
table_df,
|
| 129 |
gr.update(visible=True),
|
| 130 |
gr.update(visible=True),
|
| 131 |
-
gr.update(visible=True),
|
| 132 |
-
f'Concept names: {", ".join(concept_names)}',
|
| 133 |
)
|
| 134 |
|
| 135 |
|
|
@@ -137,7 +151,7 @@ def calculate_emdeddings_and_pca(table):
|
|
| 137 |
gr.Info("Performing PCA and clustering...")
|
| 138 |
# Perform PCA
|
| 139 |
embeddings_of_institutions = model.get_embeddings(
|
| 140 |
-
entities=np.array(table["
|
| 141 |
)
|
| 142 |
|
| 143 |
entity_embeddings_pca = pca(embeddings_of_institutions)
|
|
@@ -147,9 +161,9 @@ def calculate_emdeddings_and_pca(table):
|
|
| 147 |
|
| 148 |
plot_df = pd.DataFrame(
|
| 149 |
{
|
| 150 |
-
"
|
| 151 |
-
"
|
| 152 |
-
"
|
| 153 |
}
|
| 154 |
)
|
| 155 |
|
|
@@ -159,16 +173,16 @@ def calculate_emdeddings_and_pca(table):
|
|
| 159 |
|
| 160 |
|
| 161 |
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
|
| 162 |
-
institution_id = table["
|
| 163 |
try:
|
| 164 |
embeddings_df = embeddings_var["embeddings_df"]
|
| 165 |
plot_df = pd.DataFrame(
|
| 166 |
{
|
| 167 |
-
"
|
| 168 |
-
"
|
| 169 |
-
"
|
| 170 |
-
"
|
| 171 |
-
"
|
| 172 |
# "num_articles": table["num_articles"].values,
|
| 173 |
}
|
| 174 |
)
|
|
@@ -182,11 +196,11 @@ def click_on_show_plot(table):
|
|
| 182 |
|
| 183 |
plot_df = pd.DataFrame(
|
| 184 |
{
|
| 185 |
-
"
|
| 186 |
-
"
|
| 187 |
-
"
|
| 188 |
-
"
|
| 189 |
-
"
|
| 190 |
# "num_articles": table["num_articles"].values,
|
| 191 |
}
|
| 192 |
)
|
|
@@ -201,17 +215,17 @@ def plot_embeddings(plot_df, institution_id):
|
|
| 201 |
# fig.title("{} embeddings".format(parameter).capitalize())
|
| 202 |
ax = sns.scatterplot(
|
| 203 |
data=plot_df,
|
| 204 |
-
x="
|
| 205 |
-
y="
|
| 206 |
-
hue="
|
| 207 |
)
|
| 208 |
|
| 209 |
-
row_of_institution = plot_df[plot_df["
|
| 210 |
if not row_of_institution.empty:
|
| 211 |
ax.text(
|
| 212 |
-
row_of_institution["
|
| 213 |
-
row_of_institution["
|
| 214 |
-
row_of_institution["
|
| 215 |
horizontalalignment="left",
|
| 216 |
size="medium",
|
| 217 |
color="black",
|
|
@@ -219,20 +233,20 @@ def plot_embeddings(plot_df, institution_id):
|
|
| 219 |
)
|
| 220 |
# Also draw a point for the institution
|
| 221 |
ax.scatter(
|
| 222 |
-
row_of_institution["
|
| 223 |
-
row_of_institution["
|
| 224 |
color="black",
|
| 225 |
s=100,
|
| 226 |
marker="x",
|
| 227 |
)
|
| 228 |
# texts = []
|
| 229 |
# for i, point in plot_df.iterrows():
|
| 230 |
-
# if point["
|
| 231 |
# texts.append(
|
| 232 |
# fig.text(
|
| 233 |
-
# point["
|
| 234 |
-
# point["
|
| 235 |
-
# str(point["
|
| 236 |
# )
|
| 237 |
# )
|
| 238 |
# adjust_text(texts)
|
|
@@ -243,9 +257,9 @@ def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.Sele
|
|
| 243 |
"""
|
| 244 |
Get the authors of an institution
|
| 245 |
"""
|
| 246 |
-
institution = institutions_table["
|
| 247 |
number_of_row = evt.index[0]
|
| 248 |
-
institution = institutions_table["
|
| 249 |
concepts = separate_concepts(concept_chooser)
|
| 250 |
results_dfs = []
|
| 251 |
for concept in concepts:
|
|
@@ -255,7 +269,7 @@ def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.Sele
|
|
| 255 |
WHERE {{
|
| 256 |
?author a <urn:acmcmc:unis:Author> .
|
| 257 |
?author <urn:acmcmc:unis:name> ?name .
|
| 258 |
-
?article <urn:acmcmc:unis:written_in_institution> <{
|
| 259 |
?article <urn:acmcmc:unis:has_author> ?author .
|
| 260 |
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
|
| 261 |
}}
|
|
@@ -324,8 +338,8 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 324 |
table,
|
| 325 |
btn_plot_embeddings,
|
| 326 |
plot_embeddings_info,
|
| 327 |
-
concept_name_label,
|
| 328 |
-
concept_name_label,
|
| 329 |
],
|
| 330 |
queue=True,
|
| 331 |
)
|
|
|
|
| 98 |
]
|
| 99 |
|
| 100 |
chosen_concepts = separate_concepts(concept_chooser)
|
| 101 |
+
chosen_concepts_names = [get_concept_name(concept) for concept in chosen_concepts]
|
| 102 |
+
all_similarities = {}
|
| 103 |
for concept in chosen_concepts:
|
| 104 |
s = all_ids_institutions[:, 0]
|
| 105 |
p = np.array(["urn:acmcmc:unis:institution_related_to_concept"] * len(s))
|
|
|
|
| 108 |
array_of_triples = np.array([s, p, o]).T
|
| 109 |
|
| 110 |
scores = get_similarities_to_node(array_of_triples, model)
|
| 111 |
+
all_similarities[concept] = scores
|
| 112 |
|
| 113 |
# Now, average the similarities
|
| 114 |
+
scores = np.stack(list(all_similarities.values()), axis=0)
|
| 115 |
scores = np.mean(all_similarities, axis=0)
|
| 116 |
|
| 117 |
table_df = pd.DataFrame(
|
| 118 |
{
|
| 119 |
+
"Institution": s,
|
| 120 |
+
"Mean similarity": scores.flatten(),
|
| 121 |
+
"Institution name": all_ids_institutions[:, 1],
|
| 122 |
# "num_articles": all_ids_institutions[:, 2].astype(int),
|
| 123 |
}
|
| 124 |
)
|
| 125 |
+
|
| 126 |
+
# Add the individual similarities
|
| 127 |
+
for i, concept in enumerate(chosen_concepts):
|
| 128 |
+
table_df[f"Similarity to {chosen_concepts_names[i]}"] = all_similarities[concept]
|
| 129 |
+
|
| 130 |
+
# Reorder the columns so that the mean similarity is after the individual similarities and before the institution name
|
| 131 |
+
table_df = table_df[
|
| 132 |
+
["Institution"]
|
| 133 |
+
+ [f"Similarity to {chosen_concepts_names[i]}" for i in range(len(chosen_concepts))]
|
| 134 |
+
+ ["Mean similarity", "Institution name"]
|
| 135 |
+
]
|
| 136 |
+
|
| 137 |
+
# Sort by mean similarity
|
| 138 |
+
table_df = table_df.sort_values(by=["Mean similarity"], ascending=False)
|
| 139 |
+
|
| 140 |
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
|
| 141 |
return (
|
| 142 |
table_df,
|
| 143 |
gr.update(visible=True),
|
| 144 |
gr.update(visible=True),
|
| 145 |
+
#gr.update(visible=True),
|
| 146 |
+
#f'Concept names: {", ".join(concept_names)}',
|
| 147 |
)
|
| 148 |
|
| 149 |
|
|
|
|
| 151 |
gr.Info("Performing PCA and clustering...")
|
| 152 |
# Perform PCA
|
| 153 |
embeddings_of_institutions = model.get_embeddings(
|
| 154 |
+
entities=np.array(table["Institution"])
|
| 155 |
)
|
| 156 |
|
| 157 |
entity_embeddings_pca = pca(embeddings_of_institutions)
|
|
|
|
| 161 |
|
| 162 |
plot_df = pd.DataFrame(
|
| 163 |
{
|
| 164 |
+
"Embedding (coord 1)": entity_embeddings_pca[:, 0],
|
| 165 |
+
"Embedding (coord 2)": entity_embeddings_pca[:, 1],
|
| 166 |
+
"Cluster": "Cluster" + pd.Series(clusters).astype(str),
|
| 167 |
}
|
| 168 |
)
|
| 169 |
|
|
|
|
| 173 |
|
| 174 |
|
| 175 |
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
|
| 176 |
+
institution_id = table["Institution"][evt.index[0]]
|
| 177 |
try:
|
| 178 |
embeddings_df = embeddings_var["embeddings_df"]
|
| 179 |
plot_df = pd.DataFrame(
|
| 180 |
{
|
| 181 |
+
"Institution": table["Institution"].values,
|
| 182 |
+
"Institution name": table["Institution name"].values,
|
| 183 |
+
"Embedding (coord 1)": embeddings_df["Embedding (coord 1)"].values,
|
| 184 |
+
"Embedding (coord 2)": embeddings_df["Embedding (coord 2)"].values,
|
| 185 |
+
"Cluster": embeddings_df["Cluster"].values,
|
| 186 |
# "num_articles": table["num_articles"].values,
|
| 187 |
}
|
| 188 |
)
|
|
|
|
| 196 |
|
| 197 |
plot_df = pd.DataFrame(
|
| 198 |
{
|
| 199 |
+
"Institution": table["Institution"].values,
|
| 200 |
+
"Institution_name": table["Institution Name"].values,
|
| 201 |
+
"Embedding (coord 1)": embeddings_df["Embedding (coord 1)"].values,
|
| 202 |
+
"Embedding (coord 2)": embeddings_df["Embedding (coord 2)"].values,
|
| 203 |
+
"Cluster": embeddings_df["Cluster"].values,
|
| 204 |
# "num_articles": table["num_articles"].values,
|
| 205 |
}
|
| 206 |
)
|
|
|
|
| 215 |
# fig.title("{} embeddings".format(parameter).capitalize())
|
| 216 |
ax = sns.scatterplot(
|
| 217 |
data=plot_df,
|
| 218 |
+
x="Embedding (coord 1)",
|
| 219 |
+
y="Embedding (coord 2)",
|
| 220 |
+
hue="Cluster",
|
| 221 |
)
|
| 222 |
|
| 223 |
+
row_of_institution = plot_df[plot_df["Institution"] == institution_id]
|
| 224 |
if not row_of_institution.empty:
|
| 225 |
ax.text(
|
| 226 |
+
row_of_institution["Embedding (coord 1)"],
|
| 227 |
+
row_of_institution["Embedding (coord 2)"],
|
| 228 |
+
row_of_institution["Institution name"].values[0],
|
| 229 |
horizontalalignment="left",
|
| 230 |
size="medium",
|
| 231 |
color="black",
|
|
|
|
| 233 |
)
|
| 234 |
# Also draw a point for the institution
|
| 235 |
ax.scatter(
|
| 236 |
+
row_of_institution["Embedding (coord 1)"],
|
| 237 |
+
row_of_institution["Embedding (coord 2)"],
|
| 238 |
color="black",
|
| 239 |
s=100,
|
| 240 |
marker="x",
|
| 241 |
)
|
| 242 |
# texts = []
|
| 243 |
# for i, point in plot_df.iterrows():
|
| 244 |
+
# if point["Institution"] == institution_id:
|
| 245 |
# texts.append(
|
| 246 |
# fig.text(
|
| 247 |
+
# point["Embedding (coord 1)"] + 0.02,
|
| 248 |
+
# point["Embedding (coord 2)"] + 0.01,
|
| 249 |
+
# str(point["Institution name"]),
|
| 250 |
# )
|
| 251 |
# )
|
| 252 |
# adjust_text(texts)
|
|
|
|
| 257 |
"""
|
| 258 |
Get the authors of an institution
|
| 259 |
"""
|
| 260 |
+
institution = institutions_table["Institution"][0]
|
| 261 |
number_of_row = evt.index[0]
|
| 262 |
+
institution = institutions_table["Institution"][number_of_row]
|
| 263 |
concepts = separate_concepts(concept_chooser)
|
| 264 |
results_dfs = []
|
| 265 |
for concept in concepts:
|
|
|
|
| 269 |
WHERE {{
|
| 270 |
?author a <urn:acmcmc:unis:Author> .
|
| 271 |
?author <urn:acmcmc:unis:name> ?name .
|
| 272 |
+
?article <urn:acmcmc:unis:written_in_institution> <{Institution}> .
|
| 273 |
?article <urn:acmcmc:unis:has_author> ?author .
|
| 274 |
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
|
| 275 |
}}
|
|
|
|
| 338 |
table,
|
| 339 |
btn_plot_embeddings,
|
| 340 |
plot_embeddings_info,
|
| 341 |
+
#concept_name_label,
|
| 342 |
+
#concept_name_label,
|
| 343 |
],
|
| 344 |
queue=True,
|
| 345 |
)
|
institutions.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model/.data-00000-of-00001
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa8f3d8bd8f7a741cfe1ef560e5d2f894314342b51ec9a60844d5fc796b8e0c5
|
| 3 |
+
size 2350332477
|
model/.index
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:364d14e1bb0830e861ef9c87ee188e8b00f90eea93ea07f828d69c3daa0a4139
|
| 3 |
+
size 294
|
model/model_metadata.ampkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95e4a9f0906a1e60acbe7771e223dae8fa88859afb65066cef0541c1cbc78378
|
| 3 |
+
size 676909665
|