Spaces:
Running
Running
Upload 2 files
Browse files- .gitattributes +1 -0
- 172620-847860540_small.mp4 +3 -0
- app.py +2 -2
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
172620-847860540_small.mp4 filter=lfs diff=lfs merge=lfs -text
|
172620-847860540_small.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06c3826b9b3f98a0172234b91f2a0a7bb579043e2617d5e33eed42997ab523da
|
| 3 |
+
size 12098714
|
app.py
CHANGED
|
@@ -19,7 +19,6 @@ import utils.misc
|
|
| 19 |
import utils.saveload
|
| 20 |
from nets.blocks import InputPadder
|
| 21 |
from nets.net34 import Net
|
| 22 |
-
from tensorboardX import SummaryWriter
|
| 23 |
import imageio
|
| 24 |
from demo_dense_visualize import Tracker
|
| 25 |
import spaces
|
|
@@ -55,6 +54,7 @@ state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu')
|
|
| 55 |
model = Net(16)
|
| 56 |
count_parameters(model)
|
| 57 |
model.load_state_dict(state_dict, strict=True)
|
|
|
|
| 58 |
model.cuda()
|
| 59 |
for n, p in model.named_parameters():
|
| 60 |
p.requires_grad = False
|
|
@@ -249,7 +249,7 @@ if __name__ == '__main__':
|
|
| 249 |
|
| 250 |
with gr.Row():
|
| 251 |
with gr.Column():
|
| 252 |
-
video_input = gr.Video(label="Upload Video", value="
|
| 253 |
extract_btn = gr.Button("Extract First Frame")
|
| 254 |
# Add sliders for resolution and sliding window length.
|
| 255 |
resolution_slider = gr.Slider(minimum=512, maximum=1024, step=256, value=1024, label="Target Resolution")
|
|
|
|
| 19 |
import utils.saveload
|
| 20 |
from nets.blocks import InputPadder
|
| 21 |
from nets.net34 import Net
|
|
|
|
| 22 |
import imageio
|
| 23 |
from demo_dense_visualize import Tracker
|
| 24 |
import spaces
|
|
|
|
| 54 |
model = Net(16)
|
| 55 |
count_parameters(model)
|
| 56 |
model.load_state_dict(state_dict, strict=True)
|
| 57 |
+
print('loaded ckpt')
|
| 58 |
model.cuda()
|
| 59 |
for n, p in model.named_parameters():
|
| 60 |
p.requires_grad = False
|
|
|
|
| 249 |
|
| 250 |
with gr.Row():
|
| 251 |
with gr.Column():
|
| 252 |
+
video_input = gr.Video(label="Upload Video", value="172620-847860540_small.mp4")
|
| 253 |
extract_btn = gr.Button("Extract First Frame")
|
| 254 |
# Add sliders for resolution and sliding window length.
|
| 255 |
resolution_slider = gr.Slider(minimum=512, maximum=1024, step=256, value=1024, label="Target Resolution")
|