Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +1 -0
- demo_dense_visualize.py +50 -0
app.py
CHANGED
|
@@ -69,6 +69,7 @@ tracker = Tracker(
|
|
| 69 |
stride=8,
|
| 70 |
inference_iters=4,
|
| 71 |
target_res=1024,
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
# -------------------- Step 1: Extract the First Frame -------------------- #
|
|
|
|
| 69 |
stride=8,
|
| 70 |
inference_iters=4,
|
| 71 |
target_res=1024,
|
| 72 |
+
device=device,
|
| 73 |
)
|
| 74 |
|
| 75 |
# -------------------- Step 1: Extract the First Frame -------------------- #
|
demo_dense_visualize.py
CHANGED
|
@@ -1,9 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
import random
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
import sys
|
|
|
|
| 5 |
import torch.nn.functional as F
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import utils.loss
|
| 9 |
import utils.samp
|
|
@@ -11,10 +19,16 @@ import utils.data
|
|
| 11 |
import utils.improc
|
| 12 |
import utils.misc
|
| 13 |
import utils.saveload
|
|
|
|
|
|
|
|
|
|
| 14 |
import cv2
|
| 15 |
import imageio
|
| 16 |
from nets.blocks import InputPadder
|
|
|
|
|
|
|
| 17 |
from utils.visualizer import Visualizer
|
|
|
|
| 18 |
|
| 19 |
import torch
|
| 20 |
import requests
|
|
@@ -43,6 +57,42 @@ def run_example(processor, model, task_prompt, image, text_input=None):
|
|
| 43 |
|
| 44 |
return parsed_answer
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
class Tracker:
|
| 47 |
def __init__(self, model, mean, std, S, stride, inference_iters, target_res, device='cuda'):
|
| 48 |
"""
|
|
|
|
| 1 |
import os
|
| 2 |
import random
|
| 3 |
import torch
|
| 4 |
+
import signal
|
| 5 |
+
import socket
|
| 6 |
import sys
|
| 7 |
+
import json
|
| 8 |
import torch.nn.functional as F
|
| 9 |
import numpy as np
|
| 10 |
+
import argparse
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import torch.optim as optim
|
| 13 |
+
from torch.cuda.amp import GradScaler
|
| 14 |
+
from lightning_fabric import Fabric
|
| 15 |
|
| 16 |
import utils.loss
|
| 17 |
import utils.samp
|
|
|
|
| 19 |
import utils.improc
|
| 20 |
import utils.misc
|
| 21 |
import utils.saveload
|
| 22 |
+
from tensorboardX import SummaryWriter
|
| 23 |
+
import datetime
|
| 24 |
+
import time
|
| 25 |
import cv2
|
| 26 |
import imageio
|
| 27 |
from nets.blocks import InputPadder
|
| 28 |
+
from tqdm import tqdm
|
| 29 |
+
# from pytorch_lightning.callbacks import BaseFinetuning
|
| 30 |
from utils.visualizer import Visualizer
|
| 31 |
+
from torchvision.transforms.functional import resize
|
| 32 |
|
| 33 |
import torch
|
| 34 |
import requests
|
|
|
|
| 57 |
|
| 58 |
return parsed_answer
|
| 59 |
|
| 60 |
+
|
| 61 |
+
def polygons_to_mask(image, prediction, fill_value=255):
|
| 62 |
+
"""
|
| 63 |
+
Converts polygons into a mask.
|
| 64 |
+
|
| 65 |
+
Parameters:
|
| 66 |
+
- image: A PIL Image instance whose size will be used for the mask.
|
| 67 |
+
- prediction: Dictionary containing 'polygons' and 'labels'.
|
| 68 |
+
'polygons' is a list where each element is a list of sub-polygons.
|
| 69 |
+
- fill_value: The pixel value used to fill the polygon areas (default 255 for a binary mask).
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
- A NumPy array representing the mask (same width and height as the input image).
|
| 73 |
+
"""
|
| 74 |
+
# Create a blank grayscale mask image with the same size as the original image.
|
| 75 |
+
mask = Image.new('L', image.size, 0)
|
| 76 |
+
draw = ImageDraw.Draw(mask)
|
| 77 |
+
|
| 78 |
+
# Iterate over each set of polygons
|
| 79 |
+
for polygons in prediction['polygons']:
|
| 80 |
+
# Each element in "polygons" can be a sub-polygon
|
| 81 |
+
for poly in polygons:
|
| 82 |
+
# Ensure the polygon is in the right shape and has at least 3 points.
|
| 83 |
+
poly_arr = np.array(poly).reshape(-1, 2)
|
| 84 |
+
if poly_arr.shape[0] < 3:
|
| 85 |
+
print('Skipping invalid polygon:', poly_arr)
|
| 86 |
+
continue
|
| 87 |
+
# Convert the polygon vertices into a list for drawing.
|
| 88 |
+
poly_list = poly_arr.reshape(-1).tolist()
|
| 89 |
+
# Draw the polygon on the mask with the fill_value.
|
| 90 |
+
draw.polygon(poly_list, fill=fill_value)
|
| 91 |
+
|
| 92 |
+
# Convert the PIL mask image to a NumPy array and return it.
|
| 93 |
+
return np.array(mask)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
class Tracker:
|
| 97 |
def __init__(self, model, mean, std, S, stride, inference_iters, target_res, device='cuda'):
|
| 98 |
"""
|