Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,54 +1,40 @@
|
|
| 1 |
-
import
|
| 2 |
import random
|
|
|
|
| 3 |
import torch
|
| 4 |
-
import cv2
|
| 5 |
-
import insightface
|
| 6 |
import gradio as gr
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
from huggingface_hub import snapshot_download, login
|
|
|
|
| 10 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
| 11 |
-
from kolors.pipelines.
|
| 12 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 13 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
| 14 |
-
from diffusers import AutoencoderKL
|
| 15 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
| 16 |
-
from diffusers import EulerDiscreteScheduler
|
| 17 |
-
from PIL import Image
|
| 18 |
-
from insightface.app import FaceAnalysis
|
| 19 |
|
| 20 |
-
# ---------------------------
|
| 21 |
-
# Runtime / device settings
|
| 22 |
-
# ---------------------------
|
| 23 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
-
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
| 26 |
|
|
|
|
|
|
|
| 27 |
if HF_TOKEN:
|
| 28 |
login(token=HF_TOKEN)
|
| 29 |
print("Successfully logged in to Hugging Face Hub")
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
print("Downloading models...")
|
| 32 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors", token=HF_TOKEN)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# ---------------------------
|
| 38 |
-
# ChatGLM tokenizer pad fix
|
| 39 |
-
# ---------------------------
|
| 40 |
-
original_chatglm_pad = ChatGLMTokenizer._pad if hasattr(ChatGLMTokenizer, '_pad') else None
|
| 41 |
-
def fixed_pad(self, *args, **kwargs):
|
| 42 |
-
kwargs.pop('padding_side', None)
|
| 43 |
-
if original_chatglm_pad:
|
| 44 |
-
return original_chatglm_pad(self, *args, **kwargs)
|
| 45 |
-
else:
|
| 46 |
-
return super(ChatGLMTokenizer, self)._pad(*args, **kwargs)
|
| 47 |
-
ChatGLMTokenizer._pad = fixed_pad
|
| 48 |
-
|
| 49 |
-
# ---------------------------
|
| 50 |
-
# Load Kolors components (dtype fp16 on CUDA, fp32 on CPU)
|
| 51 |
-
# ---------------------------
|
| 52 |
text_encoder = ChatGLMModel.from_pretrained(
|
| 53 |
f"{ckpt_dir}/text_encoder",
|
| 54 |
torch_dtype=DTYPE,
|
|
@@ -60,234 +46,292 @@ tokenizer = ChatGLMTokenizer.from_pretrained(
|
|
| 60 |
)
|
| 61 |
vae = AutoencoderKL.from_pretrained(
|
| 62 |
f"{ckpt_dir}/vae",
|
|
|
|
| 63 |
torch_dtype=DTYPE
|
| 64 |
)
|
| 65 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 66 |
unet = UNet2DConditionModel.from_pretrained(
|
| 67 |
f"{ckpt_dir}/unet",
|
|
|
|
| 68 |
torch_dtype=DTYPE
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# CLIP image encoder
|
| 72 |
-
|
| 73 |
-
"
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
)
|
| 77 |
-
clip_image_processor = CLIPImageProcessor.from_pretrained(
|
| 78 |
-
"openai/clip-vit-large-patch14-336"
|
| 79 |
-
)
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
| 82 |
pipe = StableDiffusionXLPipeline(
|
| 83 |
vae=vae,
|
| 84 |
text_encoder=text_encoder,
|
| 85 |
tokenizer=tokenizer,
|
| 86 |
unet=unet,
|
| 87 |
scheduler=scheduler,
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
force_zeros_for_empty_prompt=False
|
| 91 |
)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def get_faceinfo_one_img(self, face_image: Image.Image):
|
| 109 |
-
if face_image is None:
|
| 110 |
-
return None
|
| 111 |
-
# PIL RGB -> OpenCV BGR
|
| 112 |
-
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 113 |
-
if len(face_info) == 0:
|
| 114 |
-
return None
|
| 115 |
-
# Largest face
|
| 116 |
-
face_info = sorted(
|
| 117 |
-
face_info,
|
| 118 |
-
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1])
|
| 119 |
-
)[-1]
|
| 120 |
-
return face_info
|
| 121 |
-
|
| 122 |
-
def face_bbox_to_square(bbox):
|
| 123 |
-
l, t, r, b = bbox
|
| 124 |
-
cent_x = (l + r) / 2
|
| 125 |
-
cent_y = (t + b) / 2
|
| 126 |
-
w, h = r - l, b - t
|
| 127 |
-
rad = max(w, h) / 2
|
| 128 |
-
return [cent_x - rad, cent_y - rad, cent_x + rad, cent_y + rad]
|
| 129 |
|
| 130 |
MAX_SEED = np.iinfo(np.int32).max
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
# ---------------------------
|
| 134 |
-
# Inference function
|
| 135 |
-
# - No @spaces.GPU decorator (GPU ์์ ๋ ์ถฉ๋ ๋ฐฉ์ง)
|
| 136 |
-
# - Autocast only on CUDA
|
| 137 |
-
# ---------------------------
|
| 138 |
-
def infer(
|
| 139 |
-
prompt,
|
| 140 |
-
image=None,
|
| 141 |
-
negative_prompt="low quality, blurry, distorted",
|
| 142 |
-
seed=66,
|
| 143 |
-
randomize_seed=False,
|
| 144 |
-
guidance_scale=5.0,
|
| 145 |
-
num_inference_steps=25
|
| 146 |
-
):
|
| 147 |
-
if image is None:
|
| 148 |
-
gr.Warning("Please upload an image with a face.")
|
| 149 |
-
return None, 0
|
| 150 |
|
| 151 |
-
# Detect face (InsightFace on CPU)
|
| 152 |
-
face_info = face_info_generator.get_faceinfo_one_img(image)
|
| 153 |
-
if face_info is None:
|
| 154 |
-
raise gr.Error("No face detected. Please upload an image with a clear face.")
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
crop_image = image.crop(face_bbox_square).resize((336, 336))
|
| 159 |
-
crop_image = [crop_image] # pipeline expects list
|
| 160 |
-
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
| 161 |
|
| 162 |
-
# Device move
|
| 163 |
-
device = torch.device(DEVICE)
|
| 164 |
-
global pipe
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
pipe.text_encoder = pipe.text_encoder.to(device, dtype=DTYPE)
|
| 169 |
-
pipe.unet = pipe.unet.to(device, dtype=DTYPE)
|
| 170 |
-
pipe.face_clip_encoder = pipe.face_clip_encoder.to(device, dtype=DTYPE)
|
| 171 |
-
face_embeds = face_embeds.to(device, dtype=DTYPE)
|
| 172 |
|
| 173 |
-
# Load IP-Adapter weights (FaceID Plus)
|
| 174 |
-
pipe.load_ip_adapter_faceid_plus(f"{ckpt_dir_faceid}/ipa-faceid-plus.bin", device=device)
|
| 175 |
-
pipe.set_face_fidelity_scale(0.8)
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
# Inference: autocast only on CUDA
|
| 182 |
with torch.no_grad():
|
| 183 |
if DEVICE == "cuda":
|
| 184 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 185 |
images = pipe(
|
| 186 |
prompt=prompt,
|
|
|
|
| 187 |
negative_prompt=negative_prompt,
|
| 188 |
-
height=
|
| 189 |
-
width=
|
| 190 |
num_inference_steps=int(num_inference_steps),
|
| 191 |
guidance_scale=float(guidance_scale),
|
| 192 |
num_images_per_prompt=1,
|
| 193 |
generator=generator,
|
| 194 |
-
face_crop_image=crop_image,
|
| 195 |
-
face_insightface_embeds=face_embeds
|
| 196 |
).images
|
| 197 |
else:
|
| 198 |
images = pipe(
|
| 199 |
prompt=prompt,
|
|
|
|
| 200 |
negative_prompt=negative_prompt,
|
| 201 |
-
height=
|
| 202 |
-
width=
|
| 203 |
num_inference_steps=int(num_inference_steps),
|
| 204 |
guidance_scale=float(guidance_scale),
|
| 205 |
num_images_per_prompt=1,
|
| 206 |
generator=generator,
|
| 207 |
-
face_crop_image=crop_image,
|
| 208 |
-
face_insightface_embeds=face_embeds
|
| 209 |
).images
|
| 210 |
|
| 211 |
-
|
| 212 |
|
| 213 |
-
# Offload back to CPU to free GPU memory
|
| 214 |
-
try:
|
| 215 |
-
pipe.vae = pipe.vae.to("cpu")
|
| 216 |
-
pipe.text_encoder = pipe.text_encoder.to("cpu")
|
| 217 |
-
pipe.unet = pipe.unet.to("cpu")
|
| 218 |
-
pipe.face_clip_encoder = pipe.face_clip_encoder.to("cpu")
|
| 219 |
-
if DEVICE == "cuda":
|
| 220 |
-
torch.cuda.empty_cache()
|
| 221 |
-
except Exception:
|
| 222 |
-
pass
|
| 223 |
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
# If CUDA is available, optionally wrap with spaces.GPU for scheduling
|
| 227 |
if torch.cuda.is_available():
|
| 228 |
-
infer = spaces.GPU(duration=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
# ---------------------------
|
| 231 |
-
# Gradio UI
|
| 232 |
-
# ---------------------------
|
| 233 |
css = """
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
"""
|
| 238 |
|
| 239 |
-
with gr.Blocks(
|
| 240 |
-
gr.
|
| 241 |
-
""
|
| 242 |
-
<div style='text-align: center;'>
|
| 243 |
-
<h1>๐จ Kolors Face ID - AI Portrait Generator</h1>
|
| 244 |
-
<p>Upload a face photo and create stunning AI portraits!</p>
|
| 245 |
-
<div style='display:flex; justify-content:center; gap:12px; margin-top:20px;'>
|
| 246 |
-
<a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
|
| 247 |
-
<img src="https://img.shields.io/badge/OpenFree-BEST%20AI-blue?style=for-the-badge" alt="OpenFree">
|
| 248 |
-
</a>
|
| 249 |
-
<a href="https://discord.gg/openfreeai" target="_blank">
|
| 250 |
-
<img src="https://img.shields.io/badge/Discord-OpenFree%20AI-purple?style=for-the-badge&logo=discord" alt="Discord">
|
| 251 |
-
</a>
|
| 252 |
-
</div>
|
| 253 |
-
<div style='margin-top:8px;font-size:12px;opacity:.7;'>
|
| 254 |
-
Device: {device}, DType: {dtype}
|
| 255 |
-
</div>
|
| 256 |
-
</div>
|
| 257 |
-
""".format(device=DEVICE.upper(), dtype=str(DTYPE).replace("torch.", ""))
|
| 258 |
-
)
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
prompt = gr.Textbox(
|
| 263 |
label="Prompt",
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
| 267 |
)
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
)
|
| 275 |
-
|
| 276 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 277 |
-
guidance_scale = gr.Slider(label="Guidance", minimum=1, maximum=10, step=0.5, value=5.0)
|
| 278 |
-
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, step=5, value=25)
|
| 279 |
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
-
|
|
|
|
| 287 |
fn=infer,
|
| 288 |
-
inputs=[
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
)
|
| 291 |
|
| 292 |
-
|
| 293 |
-
Kolors.queue(max_size=20).launch(debug=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
import random
|
| 3 |
+
import numpy as np
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
import spaces
|
| 9 |
+
|
| 10 |
from huggingface_hub import snapshot_download, login
|
| 11 |
+
|
| 12 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
| 13 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
|
| 14 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 15 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
|
|
|
| 16 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
| 17 |
+
from diffusers import AutoencoderKL, EulerDiscreteScheduler
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# ============= Runtime & Auth =============
|
| 21 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 22 |
if HF_TOKEN:
|
| 23 |
login(token=HF_TOKEN)
|
| 24 |
print("Successfully logged in to Hugging Face Hub")
|
| 25 |
|
| 26 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
| 28 |
+
print(f"Device: {DEVICE}, DType: {DTYPE}")
|
| 29 |
+
|
| 30 |
+
# ============= Weights =============
|
| 31 |
+
# ์๋ณธ ์ฝ๋ ๊ตฌ์กฐ๋ฅผ ๋ฐ๋ฅด๋, snapshot_download ๊ฒฝ๋ก๋ฅผ ๊ทธ๋๋ก ํ์ฉํฉ๋๋ค.
|
| 32 |
print("Downloading models...")
|
| 33 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors", token=HF_TOKEN)
|
| 34 |
+
ckpt_dir_ip = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", token=HF_TOKEN)
|
| 35 |
+
|
| 36 |
+
# ============= Load Models (IP-Adapter, not FaceID) =============
|
| 37 |
+
# CPU์์๋ fp16์ด NaN์ ์ ๋ฐํ ์ ์์ผ๋ฏ๋ก DTYPE๋ก ํต์ผ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
text_encoder = ChatGLMModel.from_pretrained(
|
| 39 |
f"{ckpt_dir}/text_encoder",
|
| 40 |
torch_dtype=DTYPE,
|
|
|
|
| 46 |
)
|
| 47 |
vae = AutoencoderKL.from_pretrained(
|
| 48 |
f"{ckpt_dir}/vae",
|
| 49 |
+
revision=None,
|
| 50 |
torch_dtype=DTYPE
|
| 51 |
)
|
| 52 |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 53 |
unet = UNet2DConditionModel.from_pretrained(
|
| 54 |
f"{ckpt_dir}/unet",
|
| 55 |
+
revision=None,
|
| 56 |
torch_dtype=DTYPE
|
| 57 |
)
|
| 58 |
|
| 59 |
+
# CLIP image encoder for IP-Adapter-Plus
|
| 60 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 61 |
+
f"{ckpt_dir_ip}/image_encoder",
|
| 62 |
+
ignore_mismatched_sizes=True
|
| 63 |
+
).to(dtype=DTYPE, device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
ip_img_size = 336
|
| 66 |
+
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
| 67 |
+
|
| 68 |
+
# StableDiffusionXL pipeline with IP-Adapter (image reference)
|
| 69 |
pipe = StableDiffusionXLPipeline(
|
| 70 |
vae=vae,
|
| 71 |
text_encoder=text_encoder,
|
| 72 |
tokenizer=tokenizer,
|
| 73 |
unet=unet,
|
| 74 |
scheduler=scheduler,
|
| 75 |
+
image_encoder=image_encoder,
|
| 76 |
+
feature_extractor=clip_image_processor,
|
| 77 |
+
force_zeros_for_empty_prompt=False
|
| 78 |
)
|
| 79 |
|
| 80 |
+
# Move core modules to device/dtype
|
| 81 |
+
pipe.vae = pipe.vae.to(DEVICE, dtype=DTYPE)
|
| 82 |
+
pipe.text_encoder = pipe.text_encoder.to(DEVICE, dtype=DTYPE)
|
| 83 |
+
pipe.unet = pipe.unet.to(DEVICE, dtype=DTYPE)
|
| 84 |
+
|
| 85 |
+
# kolors unet ํธํ ์ฒ๋ฆฌ
|
| 86 |
+
if hasattr(pipe.unet, "encoder_hid_proj"):
|
| 87 |
+
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
|
| 88 |
+
|
| 89 |
+
# Load IP-Adapter weights (general)
|
| 90 |
+
pipe.load_ip_adapter(
|
| 91 |
+
f"{ckpt_dir_ip}",
|
| 92 |
+
subfolder="",
|
| 93 |
+
weight_name=["ip_adapter_plus_general.bin"]
|
| 94 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
MAX_SEED = np.iinfo(np.int32).max
|
| 97 |
+
MAX_IMAGE_SIZE = 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
def _to_multiple_of_8(x: int) -> int:
|
| 101 |
+
return int(x // 8 * 8)
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
def _ensure_even(x: int) -> int:
|
| 105 |
+
return x if x % 2 == 0 else x - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
def _prepare_dims(width: int, height: int) -> tuple[int, int]:
|
| 109 |
+
# SDXL ๊ถ์ฅ: 8์ ๋ฐฐ์ ํด์๋
|
| 110 |
+
w = _to_multiple_of_8(width)
|
| 111 |
+
h = _to_multiple_of_8(height)
|
| 112 |
+
# H.264 ๋ฑ๊ณผ์ ํธํ์ฑ์ ๊ณ ๋ คํด ์ง์ ์ ์ง(์ ํ)
|
| 113 |
+
w = _ensure_even(w)
|
| 114 |
+
h = _ensure_even(h)
|
| 115 |
+
return max(256, min(MAX_IMAGE_SIZE, w)), max(256, min(MAX_IMAGE_SIZE, h))
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def _move_to_device():
|
| 119 |
+
# ํธ์ถ ์์ ์ ์์ ํ๊ฒ ๋ณด์ฅ
|
| 120 |
+
global pipe, image_encoder
|
| 121 |
+
pipe.vae = pipe.vae.to(DEVICE, dtype=DTYPE)
|
| 122 |
+
pipe.text_encoder = pipe.text_encoder.to(DEVICE, dtype=DTYPE)
|
| 123 |
+
pipe.unet = pipe.unet.to(DEVICE, dtype=DTYPE)
|
| 124 |
+
image_encoder = image_encoder.to(device=DEVICE, dtype=DTYPE)
|
| 125 |
+
pipe.image_encoder = image_encoder
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def _generate(
|
| 129 |
+
prompt: str,
|
| 130 |
+
ip_adapter_image: Image.Image,
|
| 131 |
+
ip_adapter_scale: float,
|
| 132 |
+
negative_prompt: str,
|
| 133 |
+
seed: int,
|
| 134 |
+
width: int,
|
| 135 |
+
height: int,
|
| 136 |
+
guidance_scale: float,
|
| 137 |
+
num_inference_steps: int,
|
| 138 |
+
):
|
| 139 |
+
_move_to_device()
|
| 140 |
+
pipe.set_ip_adapter_scale([ip_adapter_scale])
|
| 141 |
+
|
| 142 |
+
# ํด์๋ ์ ๊ทํ
|
| 143 |
+
width, height = _prepare_dims(width, height)
|
| 144 |
+
|
| 145 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 146 |
|
|
|
|
| 147 |
with torch.no_grad():
|
| 148 |
if DEVICE == "cuda":
|
| 149 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
| 150 |
images = pipe(
|
| 151 |
prompt=prompt,
|
| 152 |
+
ip_adapter_image=[ip_adapter_image],
|
| 153 |
negative_prompt=negative_prompt,
|
| 154 |
+
height=height,
|
| 155 |
+
width=width,
|
| 156 |
num_inference_steps=int(num_inference_steps),
|
| 157 |
guidance_scale=float(guidance_scale),
|
| 158 |
num_images_per_prompt=1,
|
| 159 |
generator=generator,
|
|
|
|
|
|
|
| 160 |
).images
|
| 161 |
else:
|
| 162 |
images = pipe(
|
| 163 |
prompt=prompt,
|
| 164 |
+
ip_adapter_image=[ip_adapter_image],
|
| 165 |
negative_prompt=negative_prompt,
|
| 166 |
+
height=height,
|
| 167 |
+
width=width,
|
| 168 |
num_inference_steps=int(num_inference_steps),
|
| 169 |
guidance_scale=float(guidance_scale),
|
| 170 |
num_images_per_prompt=1,
|
| 171 |
generator=generator,
|
|
|
|
|
|
|
| 172 |
).images
|
| 173 |
|
| 174 |
+
return images[0]
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
# Spaces GPU ์ค์ผ์ค๋ฌ๋ CUDA๊ฐ ์์ ๋๋ง ๊ฐ์๋๋ค.
|
| 178 |
+
def _infer_core(
|
| 179 |
+
prompt,
|
| 180 |
+
ip_adapter_image,
|
| 181 |
+
ip_adapter_scale=0.5,
|
| 182 |
+
negative_prompt="",
|
| 183 |
+
seed=100,
|
| 184 |
+
randomize_seed=False,
|
| 185 |
+
width=1024,
|
| 186 |
+
height=1024,
|
| 187 |
+
guidance_scale=5.0,
|
| 188 |
+
num_inference_steps=50,
|
| 189 |
+
progress=gr.Progress(track_tqdm=True),
|
| 190 |
+
):
|
| 191 |
+
if ip_adapter_image is None:
|
| 192 |
+
gr.Warning("Please upload an IP-Adapter reference image.")
|
| 193 |
+
return None, 0
|
| 194 |
+
|
| 195 |
+
if randomize_seed:
|
| 196 |
+
seed = random.randint(0, MAX_SEED)
|
| 197 |
+
|
| 198 |
+
image = _generate(
|
| 199 |
+
prompt=prompt or "",
|
| 200 |
+
ip_adapter_image=ip_adapter_image,
|
| 201 |
+
ip_adapter_scale=float(ip_adapter_scale),
|
| 202 |
+
negative_prompt=negative_prompt or "",
|
| 203 |
+
seed=int(seed),
|
| 204 |
+
width=int(width),
|
| 205 |
+
height=int(height),
|
| 206 |
+
guidance_scale=float(guidance_scale),
|
| 207 |
+
num_inference_steps=int(num_inference_steps),
|
| 208 |
+
)
|
| 209 |
+
return image, seed
|
| 210 |
+
|
| 211 |
|
|
|
|
| 212 |
if torch.cuda.is_available():
|
| 213 |
+
infer = spaces.GPU(duration=80)(_infer_core)
|
| 214 |
+
else:
|
| 215 |
+
infer = _infer_core
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
examples = [
|
| 219 |
+
["A dog", "minta.jpeg", 0.4],
|
| 220 |
+
["A capybara", "king-min.png", 0.5],
|
| 221 |
+
["A cat", "blue_hair.png", 0.5],
|
| 222 |
+
["", "meow.jpeg", 1.0],
|
| 223 |
+
]
|
| 224 |
|
|
|
|
|
|
|
|
|
|
| 225 |
css = """
|
| 226 |
+
#col-container {
|
| 227 |
+
margin: 0 auto;
|
| 228 |
+
max-width: 720px;
|
| 229 |
+
}
|
| 230 |
+
#result img{
|
| 231 |
+
object-position: top;
|
| 232 |
+
}
|
| 233 |
+
#result .image-container{
|
| 234 |
+
height: 100%
|
| 235 |
+
}
|
| 236 |
"""
|
| 237 |
|
| 238 |
+
with gr.Blocks(css=css) as demo:
|
| 239 |
+
with gr.Column(elem_id="col-container"):
|
| 240 |
+
gr.Markdown("# Kolors IP-Adapter - image reference and variations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
+
with gr.Row():
|
| 243 |
+
prompt = gr.Text(
|
|
|
|
| 244 |
label="Prompt",
|
| 245 |
+
show_label=False,
|
| 246 |
+
max_lines=1,
|
| 247 |
+
placeholder="Enter your prompt",
|
| 248 |
+
container=False,
|
| 249 |
)
|
| 250 |
+
run_button = gr.Button("Run", scale=0)
|
| 251 |
+
|
| 252 |
+
with gr.Row():
|
| 253 |
+
with gr.Column():
|
| 254 |
+
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
|
| 255 |
+
ip_adapter_scale = gr.Slider(
|
| 256 |
+
label="Image influence scale",
|
| 257 |
+
info="Use 1 for creating variations",
|
| 258 |
+
minimum=0.0,
|
| 259 |
+
maximum=1.0,
|
| 260 |
+
step=0.05,
|
| 261 |
+
value=0.5,
|
| 262 |
)
|
| 263 |
+
result = gr.Image(label="Result", elem_id="result")
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 266 |
+
negative_prompt = gr.Text(
|
| 267 |
+
label="Negative prompt",
|
| 268 |
+
max_lines=1,
|
| 269 |
+
placeholder="Enter a negative prompt",
|
| 270 |
+
)
|
| 271 |
+
seed = gr.Slider(
|
| 272 |
+
label="Seed",
|
| 273 |
+
minimum=0,
|
| 274 |
+
maximum=MAX_SEED,
|
| 275 |
+
step=1,
|
| 276 |
+
value=0,
|
| 277 |
+
)
|
| 278 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 279 |
+
with gr.Row():
|
| 280 |
+
width = gr.Slider(
|
| 281 |
+
label="Width",
|
| 282 |
+
minimum=256,
|
| 283 |
+
maximum=MAX_IMAGE_SIZE,
|
| 284 |
+
step=32,
|
| 285 |
+
value=1024,
|
| 286 |
+
)
|
| 287 |
+
height = gr.Slider(
|
| 288 |
+
label="Height",
|
| 289 |
+
minimum=256,
|
| 290 |
+
maximum=MAX_IMAGE_SIZE,
|
| 291 |
+
step=32,
|
| 292 |
+
value=1024,
|
| 293 |
+
)
|
| 294 |
+
with gr.Row():
|
| 295 |
+
guidance_scale = gr.Slider(
|
| 296 |
+
label="Guidance scale",
|
| 297 |
+
minimum=0.0,
|
| 298 |
+
maximum=10.0,
|
| 299 |
+
step=0.1,
|
| 300 |
+
value=5.0,
|
| 301 |
+
)
|
| 302 |
+
num_inference_steps = gr.Slider(
|
| 303 |
+
label="Number of inference steps",
|
| 304 |
+
minimum=1,
|
| 305 |
+
maximum=100,
|
| 306 |
+
step=1,
|
| 307 |
+
value=25,
|
| 308 |
+
)
|
| 309 |
|
| 310 |
+
# ํ์ผ ์์๊ฐ ๋ก์ปฌ์ ์์ ์ ์์ด cache_examples="lazy" ์ ์ง
|
| 311 |
+
gr.Examples(
|
| 312 |
+
examples=examples,
|
| 313 |
+
fn=infer,
|
| 314 |
+
inputs=[prompt, ip_adapter_image, ip_adapter_scale],
|
| 315 |
+
outputs=[result, seed],
|
| 316 |
+
cache_examples="lazy",
|
| 317 |
+
)
|
| 318 |
|
| 319 |
+
gr.on(
|
| 320 |
+
triggers=[run_button.click, prompt.submit],
|
| 321 |
fn=infer,
|
| 322 |
+
inputs=[
|
| 323 |
+
prompt,
|
| 324 |
+
ip_adapter_image,
|
| 325 |
+
ip_adapter_scale,
|
| 326 |
+
negative_prompt,
|
| 327 |
+
seed,
|
| 328 |
+
randomize_seed,
|
| 329 |
+
width,
|
| 330 |
+
height,
|
| 331 |
+
guidance_scale,
|
| 332 |
+
num_inference_steps,
|
| 333 |
+
],
|
| 334 |
+
outputs=[result, seed],
|
| 335 |
)
|
| 336 |
|
| 337 |
+
demo.queue().launch()
|
|
|