Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,970 Bytes
412af08 7df30e7 412af08 7df30e7 412af08 7df30e7 412af08 7df30e7 412af08 7df30e7 412af08 8ad5464 7df30e7 8ad5464 7df30e7 8ad5464 7df30e7 8ad5464 412af08 7df30e7 8ad5464 412af08 8ad5464 412af08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
from gradio_image_slider import ImageSlider
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA",
weight_name="qwen-edit-enhance_64-v3_000001500.safetensors",
adapter_name="upscale")
pipe.set_adapters(["upscale"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["upscale"], lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU
def upscale_image(
image,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
progress=gr.Progress(track_tqdm=True)
):
prompt = "Upscale and enhance this image with high quality details"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return (image, result), seed
# --- UI ---
css = '''
#col-container {
max-width: 900px;
margin: 0 auto;
padding: 2rem;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
}
.gradio-container {
background: linear-gradient(to bottom, #f5f5f7, #ffffff);
}
#title {
text-align: center;
font-size: 2.5rem;
font-weight: 600;
color: #1d1d1f;
margin-bottom: 0.5rem;
}
#description {
text-align: center;
font-size: 1.1rem;
color: #6e6e73;
margin-bottom: 2rem;
}
.image-container {
border-radius: 18px;
overflow: hidden;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07);
}
#convert-btn {
background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%);
border: none;
border-radius: 12px;
color: white;
font-size: 1.1rem;
font-weight: 500;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
}
#convert-btn:hover {
transform: translateY(-2px);
box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3);
}
'''
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# 🔍 Image Upscaler", elem_id="title")
gr.Markdown(
"""
Upscale and enhance your images with AI-powered quality improvement ✨
<br>
<div style='text-align: center; margin-top: 1rem;'>
<a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank' style='color: #0071e3; text-decoration: none; font-weight: 500;'>Built with anycoder</a>
</div>
""",
elem_id="description"
)
with gr.Column():
image = gr.Image(
label="Upload Image",
type="pil",
elem_classes="image-container"
)
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024, visible=False)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024, visible=False)
upscale_btn = gr.Button("Upscale Image", variant="primary", elem_id="convert-btn", size="lg")
result = ImageSlider(
label="Before / After",
interactive=False,
elem_classes="image-container"
)
inputs = [
image, seed, randomize_seed, true_guidance_scale,
num_inference_steps, height, width
]
outputs = [result, seed]
# Upscale button click
upscale_btn.click(
fn=upscale_image,
inputs=inputs,
outputs=outputs
)
# Image upload triggers dimension update
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
)
demo.launch() |