File size: 6,970 Bytes
412af08
7df30e7
412af08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df30e7
 
 
 
 
412af08
 
 
 
 
 
 
 
 
 
7df30e7
412af08
 
 
 
 
 
 
 
 
7df30e7
412af08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df30e7
412af08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad5464
 
7df30e7
8ad5464
 
7df30e7
8ad5464
 
 
 
 
 
 
 
7df30e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad5464
 
 
 
 
 
412af08
7df30e7
 
 
8ad5464
 
412af08
8ad5464
 
412af08
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
from gradio_image_slider import ImageSlider
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from PIL import Image
import os


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", 
                                                transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", 
                                                                                                         subfolder='transformer',
                                                                                                         torch_dtype=dtype,
                                                                                                         device_map='cuda'),torch_dtype=dtype).to(device)

pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", 
                       weight_name="qwen-edit-enhance_64-v3_000001500.safetensors",
                       adapter_name="upscale")
pipe.set_adapters(["upscale"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["upscale"], lora_scale=1.0)
pipe.unload_lora_weights()

pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")

MAX_SEED = np.iinfo(np.int32).max

@spaces.GPU
def upscale_image(
    image,
    seed,
    randomize_seed,
    true_guidance_scale,
    num_inference_steps,
    height,
    width,
    progress=gr.Progress(track_tqdm=True)
):
    prompt = "Upscale and enhance this image with high quality details"
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    pil_images = []
    if image is not None:
        if isinstance(image, Image.Image):
            pil_images.append(image.convert("RGB"))
        elif hasattr(image, "name"):
            pil_images.append(Image.open(image.name).convert("RGB"))

    if len(pil_images) == 0:
        raise gr.Error("Please upload an image first.")

    result = pipe(
        image=pil_images,
        prompt=prompt,
        height=height if height != 0 else None,
        width=width if width != 0 else None,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return (image, result), seed


# --- UI ---
css = '''
#col-container { 
    max-width: 900px; 
    margin: 0 auto; 
    padding: 2rem;
    font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
}
.gradio-container {
    background: linear-gradient(to bottom, #f5f5f7, #ffffff);
}
#title {
    text-align: center;
    font-size: 2.5rem;
    font-weight: 600;
    color: #1d1d1f;
    margin-bottom: 0.5rem;
}
#description {
    text-align: center;
    font-size: 1.1rem;
    color: #6e6e73;
    margin-bottom: 2rem;
}
.image-container {
    border-radius: 18px;
    overflow: hidden;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07);
}
#convert-btn {
    background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%);
    border: none;
    border-radius: 12px;
    color: white;
    font-size: 1.1rem;
    font-weight: 500;
    padding: 0.75rem 2rem;
    transition: all 0.3s ease;
}
#convert-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3);
}
'''

def update_dimensions_on_upload(image):
    if image is None:
        return 1024, 1024
    
    original_width, original_height = image.size
    
    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)
        
    # Ensure dimensions are multiples of 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8
    
    return new_width, new_height


with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# 🔍 Image Upscaler", elem_id="title")
        gr.Markdown(
            """
            Upscale and enhance your images with AI-powered quality improvement ✨
            <br>
            <div style='text-align: center; margin-top: 1rem;'>
                <a href='https://huggingface.co/spaces/akhaliq/anycoder' target='_blank' style='color: #0071e3; text-decoration: none; font-weight: 500;'>Built with anycoder</a>
            </div>
            """,
            elem_id="description"
        )

        with gr.Column():
            image = gr.Image(
                label="Upload Image", 
                type="pil",
                elem_classes="image-container"
            )
            
            with gr.Accordion("⚙️ Advanced Settings", open=False):
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                true_guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
                height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024, visible=False)
                width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024, visible=False)
            
            upscale_btn = gr.Button("Upscale Image", variant="primary", elem_id="convert-btn", size="lg")

            result = ImageSlider(
                label="Before / After", 
                interactive=False,
                elem_classes="image-container"
            )
    
    inputs = [
        image, seed, randomize_seed, true_guidance_scale, 
        num_inference_steps, height, width
    ]
    outputs = [result, seed]

    # Upscale button click
    upscale_btn.click(
        fn=upscale_image, 
        inputs=inputs, 
        outputs=outputs
    )

    # Image upload triggers dimension update
    image.upload(
        fn=update_dimensions_on_upload,
        inputs=[image],
        outputs=[width, height]
    )

demo.launch()