akhaliq HF Staff commited on
Commit
412af08
·
verified ·
1 Parent(s): 6a57a91

Deploy Gradio app with multiple files

Browse files
app.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ import torch
5
+ import spaces
6
+
7
+ from PIL import Image
8
+ from diffusers import FlowMatchEulerDiscreteScheduler
9
+ from optimization import optimize_pipeline_
10
+ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
11
+ from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
12
+ from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
13
+
14
+ import math
15
+ from huggingface_hub import hf_hub_download
16
+ from safetensors.torch import load_file
17
+
18
+ from PIL import Image
19
+ import os
20
+ import gradio as gr
21
+ from gradio_client import Client, handle_file
22
+ import tempfile
23
+
24
+
25
+ # --- Model Loading ---
26
+ dtype = torch.bfloat16
27
+ device = "cuda" if torch.cuda.is_available() else "cpu"
28
+
29
+ pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
30
+ transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
31
+ subfolder='transformer',
32
+ torch_dtype=dtype,
33
+ device_map='cuda'),torch_dtype=dtype).to(device)
34
+
35
+ pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", adapter_name="anime")
36
+ pipe.set_adapters(["anime"], adapter_weights=[1.])
37
+ pipe.fuse_lora(adapter_names=["anime"], lora_scale=1.0)
38
+ pipe.unload_lora_weights()
39
+
40
+
41
+
42
+ pipe.transformer.__class__ = QwenImageTransformer2DModel
43
+ pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
44
+
45
+ optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
46
+
47
+
48
+ MAX_SEED = np.iinfo(np.int32).max
49
+
50
+ def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
51
+ """Generates a single video segment using the external service."""
52
+ x_ip_token = request.headers['x-ip-token']
53
+ video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
54
+ result = video_client.predict(
55
+ start_image_pil=handle_file(input_image_path),
56
+ end_image_pil=handle_file(output_image_path),
57
+ prompt=prompt, api_name="/generate_video",
58
+ )
59
+ return result[0]["video"]
60
+
61
+ @spaces.GPU
62
+ def convert_to_anime(
63
+ image,
64
+ seed,
65
+ randomize_seed,
66
+ true_guidance_scale,
67
+ num_inference_steps,
68
+ height,
69
+ width,
70
+ progress=gr.Progress(track_tqdm=True)
71
+ ):
72
+ prompt = "Convert this photo to anime style"
73
+
74
+ if randomize_seed:
75
+ seed = random.randint(0, MAX_SEED)
76
+ generator = torch.Generator(device=device).manual_seed(seed)
77
+
78
+ pil_images = []
79
+ if image is not None:
80
+ if isinstance(image, Image.Image):
81
+ pil_images.append(image.convert("RGB"))
82
+ elif hasattr(image, "name"):
83
+ pil_images.append(Image.open(image.name).convert("RGB"))
84
+
85
+ if len(pil_images) == 0:
86
+ raise gr.Error("Please upload an image first.")
87
+
88
+ result = pipe(
89
+ image=pil_images,
90
+ prompt=prompt,
91
+ height=height if height != 0 else None,
92
+ width=width if width != 0 else None,
93
+ num_inference_steps=num_inference_steps,
94
+ generator=generator,
95
+ true_cfg_scale=true_guidance_scale,
96
+ num_images_per_prompt=1,
97
+ ).images[0]
98
+
99
+ return result, seed
100
+
101
+
102
+ # --- UI ---
103
+ css = '''
104
+ #col-container {
105
+ max-width: 900px;
106
+ margin: 0 auto;
107
+ padding: 2rem;
108
+ font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
109
+ }
110
+ .gradio-container {
111
+ background: linear-gradient(to bottom, #f5f5f7, #ffffff);
112
+ }
113
+ #title {
114
+ text-align: center;
115
+ font-size: 2.5rem;
116
+ font-weight: 600;
117
+ color: #1d1d1f;
118
+ margin-bottom: 0.5rem;
119
+ }
120
+ #description {
121
+ text-align: center;
122
+ font-size: 1.1rem;
123
+ color: #6e6e73;
124
+ margin-bottom: 2rem;
125
+ }
126
+ .image-container {
127
+ border-radius: 18px;
128
+ overflow: hidden;
129
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07);
130
+ }
131
+ #convert-btn {
132
+ background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%);
133
+ border: none;
134
+ border-radius: 12px;
135
+ color: white;
136
+ font-size: 1.1rem;
137
+ font-weight: 500;
138
+ padding: 0.75rem 2rem;
139
+ transition: all 0.3s ease;
140
+ }
141
+ #convert-btn:hover {
142
+ transform: translateY(-2px);
143
+ box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3);
144
+ }
145
+ '''
146
+
147
+ def update_dimensions_on_upload(image):
148
+ if image is None:
149
+ return 1024, 1024
150
+
151
+ original_width, original_height = image.size
152
+
153
+ if original_width > original_height:
154
+ new_width = 1024
155
+ aspect_ratio = original_height / original_width
156
+ new_height = int(new_width * aspect_ratio)
157
+ else:
158
+ new_height = 1024
159
+ aspect_ratio = original_width / original_height
160
+ new_width = int(new_height * aspect_ratio)
161
+
162
+ # Ensure dimensions are multiples of 8
163
+ new_width = (new_width // 8) * 8
164
+ new_height = (new_height // 8) * 8
165
+
166
+ return new_width, new_height
167
+
168
+
169
+
170
+ ["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
171
+ ["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
172
+ ["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
173
+ ["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
174
+ ["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
175
+ ],
176
+ inputs=[image,rotate_deg, move_forward,
177
+ vertical_tilt, wideangle,
178
+ seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width],
179
+ outputs=outputs,
180
+ fn=infer_camera_edit,
181
+ cache_examples="lazy",
182
+ elem_id="examples"
183
+ )
184
+
185
+ # Image upload triggers dimension update and control reset
186
+ image.upload(
187
+ fn=update_dimensions_on_upload,
188
+ inputs=[image],
189
+ outputs=[width, height]
190
+ ).then(
191
+ fn=reset_all,
192
+ inputs=None,
193
+ outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
194
+ queue=False
195
+ ).then(
196
+ fn=end_reset,
197
+ inputs=None,
198
+ outputs=[is_reset],
199
+ queue=False
200
+ )
201
+
202
+
203
+ # Live updates
204
+ def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
205
+ if is_reset:
206
+ return gr.update(), gr.update(), gr.update(), gr.update()
207
+ else:
208
+ result_img, result_seed, result_prompt = infer_camera_edit(*args)
209
+ # Show video button if we have both input and output
210
+ show_button = args[0] is not None and result_img is not None
211
+ return result_img, result_seed, result_prompt, gr.update(visible=show_button)
212
+
213
+ control_inputs = [
214
+ image, rotate_deg, move_forward,
215
+ vertical_tilt, wideangle,
216
+ seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
217
+ ]
218
+ control_inputs_with_flag = [is_reset] + control_inputs
219
+
220
+ for control in [rotate_deg, move_forward, vertical_tilt]:
221
+ control.release(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
222
+
223
+ wideangle.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
224
+
225
+ run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
226
+
227
+ demo.launch()
optimization.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ """
3
+
4
+ from typing import Any
5
+ from typing import Callable
6
+ from typing import ParamSpec
7
+ from torchao.quantization import quantize_
8
+ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
9
+ import spaces
10
+ import torch
11
+ from torch.utils._pytree import tree_map
12
+
13
+
14
+ P = ParamSpec('P')
15
+
16
+
17
+ TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length')
18
+ TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length')
19
+
20
+ TRANSFORMER_DYNAMIC_SHAPES = {
21
+ 'hidden_states': {
22
+ 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
23
+ },
24
+ 'encoder_hidden_states': {
25
+ 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
26
+ },
27
+ 'encoder_hidden_states_mask': {
28
+ 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
29
+ },
30
+ 'image_rotary_emb': ({
31
+ 0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
32
+ }, {
33
+ 0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
34
+ }),
35
+ }
36
+
37
+
38
+ INDUCTOR_CONFIGS = {
39
+ 'conv_1x1_as_mm': True,
40
+ 'epilogue_fusion': False,
41
+ 'coordinate_descent_tuning': True,
42
+ 'coordinate_descent_check_all_directions': True,
43
+ 'max_autotune': True,
44
+ 'triton.cudagraphs': True,
45
+ }
46
+
47
+
48
+ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
49
+
50
+ @spaces.GPU(duration=1500)
51
+ def compile_transformer():
52
+
53
+ with spaces.aoti_capture(pipeline.transformer) as call:
54
+ pipeline(*args, **kwargs)
55
+
56
+ dynamic_shapes = tree_map(lambda t: None, call.kwargs)
57
+ dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
58
+
59
+ # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
60
+
61
+ exported = torch.export.export(
62
+ mod=pipeline.transformer,
63
+ args=call.args,
64
+ kwargs=call.kwargs,
65
+ dynamic_shapes=dynamic_shapes,
66
+ )
67
+
68
+ return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
69
+
70
+ spaces.aoti_apply(compile_transformer(), pipeline.transformer)
qwenimage/__init__.py ADDED
File without changes
qwenimage/pipeline_qwenimage_edit_plus.py ADDED
@@ -0,0 +1,889 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ from typing import Any, Callable, Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+ import torch
21
+ from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
22
+
23
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
24
+ from diffusers.loaders import QwenImageLoraLoaderMixin
25
+ from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
26
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
27
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
28
+ from diffusers.utils.torch_utils import randn_tensor
29
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
30
+ from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
31
+
32
+
33
+ if is_torch_xla_available():
34
+ import torch_xla.core.xla_model as xm
35
+
36
+ XLA_AVAILABLE = True
37
+ else:
38
+ XLA_AVAILABLE = False
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+ EXAMPLE_DOC_STRING = """
44
+ Examples:
45
+ >>> import torch
46
+ >>> from PIL import Image
47
+ >>> from diffusers import QwenImageEditPlusPipeline
48
+ >>> from diffusers.utils import load_image
49
+
50
+ >>> pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16)
51
+ >>> pipe.to("cuda")
52
+ >>> image = load_image(
53
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
54
+ ... ).convert("RGB")
55
+ >>> prompt = (
56
+ ... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors"
57
+ ... )
58
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
59
+ >>> # Refer to the pipeline documentation for more details.
60
+ >>> image = pipe(image, prompt, num_inference_steps=50).images[0]
61
+ >>> image.save("qwenimage_edit_plus.png")
62
+ """
63
+
64
+ CONDITION_IMAGE_SIZE = 384 * 384
65
+ VAE_IMAGE_SIZE = 1024 * 1024
66
+
67
+
68
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
69
+ def calculate_shift(
70
+ image_seq_len,
71
+ base_seq_len: int = 256,
72
+ max_seq_len: int = 4096,
73
+ base_shift: float = 0.5,
74
+ max_shift: float = 1.15,
75
+ ):
76
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
77
+ b = base_shift - m * base_seq_len
78
+ mu = image_seq_len * m + b
79
+ return mu
80
+
81
+
82
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
83
+ def retrieve_timesteps(
84
+ scheduler,
85
+ num_inference_steps: Optional[int] = None,
86
+ device: Optional[Union[str, torch.device]] = None,
87
+ timesteps: Optional[List[int]] = None,
88
+ sigmas: Optional[List[float]] = None,
89
+ **kwargs,
90
+ ):
91
+ r"""
92
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
93
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
94
+
95
+ Args:
96
+ scheduler (`SchedulerMixin`):
97
+ The scheduler to get timesteps from.
98
+ num_inference_steps (`int`):
99
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
100
+ must be `None`.
101
+ device (`str` or `torch.device`, *optional*):
102
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
103
+ timesteps (`List[int]`, *optional*):
104
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
105
+ `num_inference_steps` and `sigmas` must be `None`.
106
+ sigmas (`List[float]`, *optional*):
107
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
108
+ `num_inference_steps` and `timesteps` must be `None`.
109
+
110
+ Returns:
111
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
112
+ second element is the number of inference steps.
113
+ """
114
+ if timesteps is not None and sigmas is not None:
115
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
116
+ if timesteps is not None:
117
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
118
+ if not accepts_timesteps:
119
+ raise ValueError(
120
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
121
+ f" timestep schedules. Please check whether you are using the correct scheduler."
122
+ )
123
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
124
+ timesteps = scheduler.timesteps
125
+ num_inference_steps = len(timesteps)
126
+ elif sigmas is not None:
127
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
128
+ if not accept_sigmas:
129
+ raise ValueError(
130
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
131
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
132
+ )
133
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
134
+ timesteps = scheduler.timesteps
135
+ num_inference_steps = len(timesteps)
136
+ else:
137
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
138
+ timesteps = scheduler.timesteps
139
+ return timesteps, num_inference_steps
140
+
141
+
142
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
143
+ def retrieve_latents(
144
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
145
+ ):
146
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
147
+ return encoder_output.latent_dist.sample(generator)
148
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
149
+ return encoder_output.latent_dist.mode()
150
+ elif hasattr(encoder_output, "latents"):
151
+ return encoder_output.latents
152
+ else:
153
+ raise AttributeError("Could not access latents of provided encoder_output")
154
+
155
+
156
+ def calculate_dimensions(target_area, ratio):
157
+ width = math.sqrt(target_area * ratio)
158
+ height = width / ratio
159
+
160
+ width = round(width / 32) * 32
161
+ height = round(height / 32) * 32
162
+
163
+ return width, height
164
+
165
+
166
+ class QwenImageEditPlusPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
167
+ r"""
168
+ The Qwen-Image-Edit pipeline for image editing.
169
+
170
+ Args:
171
+ transformer ([`QwenImageTransformer2DModel`]):
172
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
173
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
174
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
175
+ vae ([`AutoencoderKL`]):
176
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
177
+ text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
178
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
179
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
180
+ tokenizer (`QwenTokenizer`):
181
+ Tokenizer of class
182
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
183
+ """
184
+
185
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
186
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
187
+
188
+ def __init__(
189
+ self,
190
+ scheduler: FlowMatchEulerDiscreteScheduler,
191
+ vae: AutoencoderKLQwenImage,
192
+ text_encoder: Qwen2_5_VLForConditionalGeneration,
193
+ tokenizer: Qwen2Tokenizer,
194
+ processor: Qwen2VLProcessor,
195
+ transformer: QwenImageTransformer2DModel,
196
+ ):
197
+ super().__init__()
198
+
199
+ self.register_modules(
200
+ vae=vae,
201
+ text_encoder=text_encoder,
202
+ tokenizer=tokenizer,
203
+ processor=processor,
204
+ transformer=transformer,
205
+ scheduler=scheduler,
206
+ )
207
+ self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
208
+ self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
209
+ # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
210
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
211
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
212
+ self.tokenizer_max_length = 1024
213
+
214
+ self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
215
+ self.prompt_template_encode_start_idx = 64
216
+ self.default_sample_size = 128
217
+
218
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
219
+ def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
220
+ bool_mask = mask.bool()
221
+ valid_lengths = bool_mask.sum(dim=1)
222
+ selected = hidden_states[bool_mask]
223
+ split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
224
+
225
+ return split_result
226
+
227
+ def _get_qwen_prompt_embeds(
228
+ self,
229
+ prompt: Union[str, List[str]] = None,
230
+ image: Optional[torch.Tensor] = None,
231
+ device: Optional[torch.device] = None,
232
+ dtype: Optional[torch.dtype] = None,
233
+ ):
234
+ device = device or self._execution_device
235
+ dtype = dtype or self.text_encoder.dtype
236
+
237
+ prompt = [prompt] if isinstance(prompt, str) else prompt
238
+ img_prompt_template = "Picture {}: <|vision_start|><|image_pad|><|vision_end|>"
239
+ if isinstance(image, list):
240
+ base_img_prompt = ""
241
+ for i, img in enumerate(image):
242
+ base_img_prompt += img_prompt_template.format(i + 1)
243
+ elif image is not None:
244
+ base_img_prompt = img_prompt_template.format(1)
245
+ else:
246
+ base_img_prompt = ""
247
+
248
+ template = self.prompt_template_encode
249
+
250
+ drop_idx = self.prompt_template_encode_start_idx
251
+ txt = [template.format(base_img_prompt + e) for e in prompt]
252
+
253
+ model_inputs = self.processor(
254
+ text=txt,
255
+ images=image,
256
+ padding=True,
257
+ return_tensors="pt",
258
+ ).to(device)
259
+
260
+ outputs = self.text_encoder(
261
+ input_ids=model_inputs.input_ids,
262
+ attention_mask=model_inputs.attention_mask,
263
+ pixel_values=model_inputs.pixel_values,
264
+ image_grid_thw=model_inputs.image_grid_thw,
265
+ output_hidden_states=True,
266
+ )
267
+
268
+ hidden_states = outputs.hidden_states[-1]
269
+ split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask)
270
+ split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
271
+ attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
272
+ max_seq_len = max([e.size(0) for e in split_hidden_states])
273
+ prompt_embeds = torch.stack(
274
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
275
+ )
276
+ encoder_attention_mask = torch.stack(
277
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
278
+ )
279
+
280
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
281
+
282
+ return prompt_embeds, encoder_attention_mask
283
+
284
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline.encode_prompt
285
+ def encode_prompt(
286
+ self,
287
+ prompt: Union[str, List[str]],
288
+ image: Optional[torch.Tensor] = None,
289
+ device: Optional[torch.device] = None,
290
+ num_images_per_prompt: int = 1,
291
+ prompt_embeds: Optional[torch.Tensor] = None,
292
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
293
+ max_sequence_length: int = 1024,
294
+ ):
295
+ r"""
296
+
297
+ Args:
298
+ prompt (`str` or `List[str]`, *optional*):
299
+ prompt to be encoded
300
+ image (`torch.Tensor`, *optional*):
301
+ image to be encoded
302
+ device: (`torch.device`):
303
+ torch device
304
+ num_images_per_prompt (`int`):
305
+ number of images that should be generated per prompt
306
+ prompt_embeds (`torch.Tensor`, *optional*):
307
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
308
+ provided, text embeddings will be generated from `prompt` input argument.
309
+ """
310
+ device = device or self._execution_device
311
+
312
+ prompt = [prompt] if isinstance(prompt, str) else prompt
313
+ batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
314
+
315
+ if prompt_embeds is None:
316
+ prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device)
317
+
318
+ _, seq_len, _ = prompt_embeds.shape
319
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
320
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
321
+ prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
322
+ prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
323
+
324
+ return prompt_embeds, prompt_embeds_mask
325
+
326
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline.check_inputs
327
+ def check_inputs(
328
+ self,
329
+ prompt,
330
+ height,
331
+ width,
332
+ negative_prompt=None,
333
+ prompt_embeds=None,
334
+ negative_prompt_embeds=None,
335
+ prompt_embeds_mask=None,
336
+ negative_prompt_embeds_mask=None,
337
+ callback_on_step_end_tensor_inputs=None,
338
+ max_sequence_length=None,
339
+ ):
340
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
341
+ logger.warning(
342
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
343
+ )
344
+
345
+ if callback_on_step_end_tensor_inputs is not None and not all(
346
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
347
+ ):
348
+ raise ValueError(
349
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
350
+ )
351
+
352
+ if prompt is not None and prompt_embeds is not None:
353
+ raise ValueError(
354
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
355
+ " only forward one of the two."
356
+ )
357
+ elif prompt is None and prompt_embeds is None:
358
+ raise ValueError(
359
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
360
+ )
361
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
362
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
363
+
364
+ if negative_prompt is not None and negative_prompt_embeds is not None:
365
+ raise ValueError(
366
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
367
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
368
+ )
369
+
370
+ if prompt_embeds is not None and prompt_embeds_mask is None:
371
+ raise ValueError(
372
+ "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
373
+ )
374
+ if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
375
+ raise ValueError(
376
+ "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
377
+ )
378
+
379
+ if max_sequence_length is not None and max_sequence_length > 1024:
380
+ raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
381
+
382
+ @staticmethod
383
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
384
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
385
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
386
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
387
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
388
+
389
+ return latents
390
+
391
+ @staticmethod
392
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
393
+ def _unpack_latents(latents, height, width, vae_scale_factor):
394
+ batch_size, num_patches, channels = latents.shape
395
+
396
+ # VAE applies 8x compression on images but we must also account for packing which requires
397
+ # latent height and width to be divisible by 2.
398
+ height = 2 * (int(height) // (vae_scale_factor * 2))
399
+ width = 2 * (int(width) // (vae_scale_factor * 2))
400
+
401
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
402
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
403
+
404
+ latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
405
+
406
+ return latents
407
+
408
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_edit.QwenImageEditPipeline._encode_vae_image
409
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
410
+ if isinstance(generator, list):
411
+ image_latents = [
412
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
413
+ for i in range(image.shape[0])
414
+ ]
415
+ image_latents = torch.cat(image_latents, dim=0)
416
+ else:
417
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
418
+ latents_mean = (
419
+ torch.tensor(self.vae.config.latents_mean)
420
+ .view(1, self.latent_channels, 1, 1, 1)
421
+ .to(image_latents.device, image_latents.dtype)
422
+ )
423
+ latents_std = (
424
+ torch.tensor(self.vae.config.latents_std)
425
+ .view(1, self.latent_channels, 1, 1, 1)
426
+ .to(image_latents.device, image_latents.dtype)
427
+ )
428
+ image_latents = (image_latents - latents_mean) / latents_std
429
+
430
+ return image_latents
431
+
432
+ def prepare_latents(
433
+ self,
434
+ images,
435
+ batch_size,
436
+ num_channels_latents,
437
+ height,
438
+ width,
439
+ dtype,
440
+ device,
441
+ generator,
442
+ latents=None,
443
+ ):
444
+ # VAE applies 8x compression on images but we must also account for packing which requires
445
+ # latent height and width to be divisible by 2.
446
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
447
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
448
+
449
+ shape = (batch_size, 1, num_channels_latents, height, width)
450
+
451
+ image_latents = None
452
+ if images is not None:
453
+ if not isinstance(images, list):
454
+ images = [images]
455
+ all_image_latents = []
456
+ for image in images:
457
+ image = image.to(device=device, dtype=dtype)
458
+ if image.shape[1] != self.latent_channels:
459
+ image_latents = self._encode_vae_image(image=image, generator=generator)
460
+ else:
461
+ image_latents = image
462
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
463
+ # expand init_latents for batch_size
464
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
465
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
466
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
467
+ raise ValueError(
468
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
469
+ )
470
+ else:
471
+ image_latents = torch.cat([image_latents], dim=0)
472
+
473
+ image_latent_height, image_latent_width = image_latents.shape[3:]
474
+ image_latents = self._pack_latents(
475
+ image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
476
+ )
477
+ all_image_latents.append(image_latents)
478
+ image_latents = torch.cat(all_image_latents, dim=1)
479
+
480
+ if isinstance(generator, list) and len(generator) != batch_size:
481
+ raise ValueError(
482
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
483
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
484
+ )
485
+ if latents is None:
486
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
487
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
488
+ else:
489
+ latents = latents.to(device=device, dtype=dtype)
490
+
491
+ return latents, image_latents
492
+
493
+ @property
494
+ def guidance_scale(self):
495
+ return self._guidance_scale
496
+
497
+ @property
498
+ def attention_kwargs(self):
499
+ return self._attention_kwargs
500
+
501
+ @property
502
+ def num_timesteps(self):
503
+ return self._num_timesteps
504
+
505
+ @property
506
+ def current_timestep(self):
507
+ return self._current_timestep
508
+
509
+ @property
510
+ def interrupt(self):
511
+ return self._interrupt
512
+
513
+ @torch.no_grad()
514
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
515
+ def __call__(
516
+ self,
517
+ image: Optional[PipelineImageInput] = None,
518
+ prompt: Union[str, List[str]] = None,
519
+ negative_prompt: Union[str, List[str]] = None,
520
+ true_cfg_scale: float = 4.0,
521
+ height: Optional[int] = None,
522
+ width: Optional[int] = None,
523
+ num_inference_steps: int = 50,
524
+ sigmas: Optional[List[float]] = None,
525
+ guidance_scale: Optional[float] = None,
526
+ num_images_per_prompt: int = 1,
527
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
528
+ latents: Optional[torch.Tensor] = None,
529
+ prompt_embeds: Optional[torch.Tensor] = None,
530
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
531
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
532
+ negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
533
+ output_type: Optional[str] = "pil",
534
+ return_dict: bool = True,
535
+ attention_kwargs: Optional[Dict[str, Any]] = None,
536
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
537
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
538
+ max_sequence_length: int = 512,
539
+ ):
540
+ r"""
541
+ Function invoked when calling the pipeline for generation.
542
+
543
+ Args:
544
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
545
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
546
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
547
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
548
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
549
+ latents as `image`, but if passing latents directly it is not encoded again.
550
+ prompt (`str` or `List[str]`, *optional*):
551
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
552
+ instead.
553
+ negative_prompt (`str` or `List[str]`, *optional*):
554
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
555
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
556
+ not greater than `1`).
557
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
558
+ true_cfg_scale (`float`, *optional*, defaults to 1.0): Guidance scale as defined in [Classifier-Free
559
+ Diffusion Guidance](https://huggingface.co/papers/2207.12598). `true_cfg_scale` is defined as `w` of
560
+ equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487). Classifier-free guidance is
561
+ enabled by setting `true_cfg_scale > 1` and a provided `negative_prompt`. Higher guidance scale
562
+ encourages to generate images that are closely linked to the text `prompt`, usually at the expense of
563
+ lower image quality.
564
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
565
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
566
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
567
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
568
+ num_inference_steps (`int`, *optional*, defaults to 50):
569
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
570
+ expense of slower inference.
571
+ sigmas (`List[float]`, *optional*):
572
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
573
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
574
+ will be used.
575
+ guidance_scale (`float`, *optional*, defaults to None):
576
+ A guidance scale value for guidance distilled models. Unlike the traditional classifier-free guidance
577
+ where the guidance scale is applied during inference through noise prediction rescaling, guidance
578
+ distilled models take the guidance scale directly as an input parameter during forward pass. Guidance
579
+ scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images
580
+ that are closely linked to the text `prompt`, usually at the expense of lower image quality. This
581
+ parameter in the pipeline is there to support future guidance-distilled models when they come up. It is
582
+ ignored when not using guidance distilled models. To enable traditional classifier-free guidance,
583
+ please pass `true_cfg_scale > 1.0` and `negative_prompt` (even an empty negative prompt like " " should
584
+ enable classifier-free guidance computations).
585
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
586
+ The number of images to generate per prompt.
587
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
588
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
589
+ to make generation deterministic.
590
+ latents (`torch.Tensor`, *optional*):
591
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
592
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
593
+ tensor will be generated by sampling using the supplied random `generator`.
594
+ prompt_embeds (`torch.Tensor`, *optional*):
595
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
596
+ provided, text embeddings will be generated from `prompt` input argument.
597
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
598
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
599
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
600
+ argument.
601
+ output_type (`str`, *optional*, defaults to `"pil"`):
602
+ The output format of the generate image. Choose between
603
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
604
+ return_dict (`bool`, *optional*, defaults to `True`):
605
+ Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
606
+ attention_kwargs (`dict`, *optional*):
607
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
608
+ `self.processor` in
609
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
610
+ callback_on_step_end (`Callable`, *optional*):
611
+ A function that calls at the end of each denoising steps during the inference. The function is called
612
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
613
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
614
+ `callback_on_step_end_tensor_inputs`.
615
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
616
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
617
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
618
+ `._callback_tensor_inputs` attribute of your pipeline class.
619
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
620
+
621
+ Examples:
622
+
623
+ Returns:
624
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
625
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
626
+ returning a tuple, the first element is a list with the generated images.
627
+ """
628
+ image_size = image[-1].size if isinstance(image, list) else image.size
629
+ calculated_width, calculated_height = calculate_dimensions(1024 * 1024, image_size[0] / image_size[1])
630
+ height = height or calculated_height
631
+ width = width or calculated_width
632
+
633
+ multiple_of = self.vae_scale_factor * 2
634
+ width = width // multiple_of * multiple_of
635
+ height = height // multiple_of * multiple_of
636
+
637
+ # 1. Check inputs. Raise error if not correct
638
+ self.check_inputs(
639
+ prompt,
640
+ height,
641
+ width,
642
+ negative_prompt=negative_prompt,
643
+ prompt_embeds=prompt_embeds,
644
+ negative_prompt_embeds=negative_prompt_embeds,
645
+ prompt_embeds_mask=prompt_embeds_mask,
646
+ negative_prompt_embeds_mask=negative_prompt_embeds_mask,
647
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
648
+ max_sequence_length=max_sequence_length,
649
+ )
650
+
651
+ self._guidance_scale = guidance_scale
652
+ self._attention_kwargs = attention_kwargs
653
+ self._current_timestep = None
654
+ self._interrupt = False
655
+
656
+ # 2. Define call parameters
657
+ if prompt is not None and isinstance(prompt, str):
658
+ batch_size = 1
659
+ elif prompt is not None and isinstance(prompt, list):
660
+ batch_size = len(prompt)
661
+ else:
662
+ batch_size = prompt_embeds.shape[0]
663
+
664
+ device = self._execution_device
665
+ # 3. Preprocess image
666
+ if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
667
+ if not isinstance(image, list):
668
+ image = [image]
669
+ condition_image_sizes = []
670
+ condition_images = []
671
+ vae_image_sizes = []
672
+ vae_images = []
673
+ for img in image:
674
+ image_width, image_height = img.size
675
+ condition_width, condition_height = calculate_dimensions(
676
+ CONDITION_IMAGE_SIZE, image_width / image_height
677
+ )
678
+ vae_width, vae_height = calculate_dimensions(VAE_IMAGE_SIZE, image_width / image_height)
679
+ condition_image_sizes.append((condition_width, condition_height))
680
+ vae_image_sizes.append((vae_width, vae_height))
681
+ condition_images.append(self.image_processor.resize(img, condition_height, condition_width))
682
+ vae_images.append(self.image_processor.preprocess(img, vae_height, vae_width).unsqueeze(2))
683
+
684
+ has_neg_prompt = negative_prompt is not None or (
685
+ negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
686
+ )
687
+
688
+ if true_cfg_scale > 1 and not has_neg_prompt:
689
+ logger.warning(
690
+ f"true_cfg_scale is passed as {true_cfg_scale}, but classifier-free guidance is not enabled since no negative_prompt is provided."
691
+ )
692
+ elif true_cfg_scale <= 1 and has_neg_prompt:
693
+ logger.warning(
694
+ " negative_prompt is passed but classifier-free guidance is not enabled since true_cfg_scale <= 1"
695
+ )
696
+
697
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
698
+ prompt_embeds, prompt_embeds_mask = self.encode_prompt(
699
+ image=condition_images,
700
+ prompt=prompt,
701
+ prompt_embeds=prompt_embeds,
702
+ prompt_embeds_mask=prompt_embeds_mask,
703
+ device=device,
704
+ num_images_per_prompt=num_images_per_prompt,
705
+ max_sequence_length=max_sequence_length,
706
+ )
707
+ if do_true_cfg:
708
+ negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
709
+ image=condition_images,
710
+ prompt=negative_prompt,
711
+ prompt_embeds=negative_prompt_embeds,
712
+ prompt_embeds_mask=negative_prompt_embeds_mask,
713
+ device=device,
714
+ num_images_per_prompt=num_images_per_prompt,
715
+ max_sequence_length=max_sequence_length,
716
+ )
717
+
718
+ # 4. Prepare latent variables
719
+ num_channels_latents = self.transformer.config.in_channels // 4
720
+ latents, image_latents = self.prepare_latents(
721
+ vae_images,
722
+ batch_size * num_images_per_prompt,
723
+ num_channels_latents,
724
+ height,
725
+ width,
726
+ prompt_embeds.dtype,
727
+ device,
728
+ generator,
729
+ latents,
730
+ )
731
+ img_shapes = [
732
+ [
733
+ (1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
734
+ *[
735
+ (1, vae_height // self.vae_scale_factor // 2, vae_width // self.vae_scale_factor // 2)
736
+ for vae_width, vae_height in vae_image_sizes
737
+ ],
738
+ ]
739
+ ] * batch_size
740
+
741
+ # 5. Prepare timesteps
742
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
743
+ image_seq_len = latents.shape[1]
744
+ mu = calculate_shift(
745
+ image_seq_len,
746
+ self.scheduler.config.get("base_image_seq_len", 256),
747
+ self.scheduler.config.get("max_image_seq_len", 4096),
748
+ self.scheduler.config.get("base_shift", 0.5),
749
+ self.scheduler.config.get("max_shift", 1.15),
750
+ )
751
+ timesteps, num_inference_steps = retrieve_timesteps(
752
+ self.scheduler,
753
+ num_inference_steps,
754
+ device,
755
+ sigmas=sigmas,
756
+ mu=mu,
757
+ )
758
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
759
+ self._num_timesteps = len(timesteps)
760
+
761
+ # handle guidance
762
+ if self.transformer.config.guidance_embeds and guidance_scale is None:
763
+ raise ValueError("guidance_scale is required for guidance-distilled model.")
764
+ elif self.transformer.config.guidance_embeds:
765
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
766
+ guidance = guidance.expand(latents.shape[0])
767
+ elif not self.transformer.config.guidance_embeds and guidance_scale is not None:
768
+ logger.warning(
769
+ f"guidance_scale is passed as {guidance_scale}, but ignored since the model is not guidance-distilled."
770
+ )
771
+ guidance = None
772
+ elif not self.transformer.config.guidance_embeds and guidance_scale is None:
773
+ guidance = None
774
+
775
+ if self.attention_kwargs is None:
776
+ self._attention_kwargs = {}
777
+
778
+ txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
779
+
780
+ image_rotary_emb = self.transformer.pos_embed(img_shapes, txt_seq_lens, device=latents.device)
781
+ if do_true_cfg:
782
+ negative_txt_seq_lens = (
783
+ negative_prompt_embeds_mask.sum(dim=1).tolist()
784
+ if negative_prompt_embeds_mask is not None
785
+ else None
786
+ )
787
+ uncond_image_rotary_emb = self.transformer.pos_embed(
788
+ img_shapes, negative_txt_seq_lens, device=latents.device
789
+ )
790
+ else:
791
+ uncond_image_rotary_emb = None
792
+
793
+ # 6. Denoising loop
794
+ self.scheduler.set_begin_index(0)
795
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
796
+ for i, t in enumerate(timesteps):
797
+ if self.interrupt:
798
+ continue
799
+
800
+ self._current_timestep = t
801
+
802
+ latent_model_input = latents
803
+ if image_latents is not None:
804
+ latent_model_input = torch.cat([latents, image_latents], dim=1)
805
+
806
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
807
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
808
+ with self.transformer.cache_context("cond"):
809
+ noise_pred = self.transformer(
810
+ hidden_states=latent_model_input,
811
+ timestep=timestep / 1000,
812
+ guidance=guidance,
813
+ encoder_hidden_states_mask=prompt_embeds_mask,
814
+ encoder_hidden_states=prompt_embeds,
815
+ image_rotary_emb=image_rotary_emb,
816
+ attention_kwargs=self.attention_kwargs,
817
+ return_dict=False,
818
+ )[0]
819
+ noise_pred = noise_pred[:, : latents.size(1)]
820
+
821
+ if do_true_cfg:
822
+ with self.transformer.cache_context("uncond"):
823
+ neg_noise_pred = self.transformer(
824
+ hidden_states=latent_model_input,
825
+ timestep=timestep / 1000,
826
+ guidance=guidance,
827
+ encoder_hidden_states_mask=negative_prompt_embeds_mask,
828
+ encoder_hidden_states=negative_prompt_embeds,
829
+ image_rotary_emb=uncond_image_rotary_emb,
830
+ attention_kwargs=self.attention_kwargs,
831
+ return_dict=False,
832
+ )[0]
833
+ neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
834
+ comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
835
+
836
+ cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
837
+ noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
838
+ noise_pred = comb_pred * (cond_norm / noise_norm)
839
+
840
+ # compute the previous noisy sample x_t -> x_t-1
841
+ latents_dtype = latents.dtype
842
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
843
+
844
+ if latents.dtype != latents_dtype:
845
+ if torch.backends.mps.is_available():
846
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
847
+ latents = latents.to(latents_dtype)
848
+
849
+ if callback_on_step_end is not None:
850
+ callback_kwargs = {}
851
+ for k in callback_on_step_end_tensor_inputs:
852
+ callback_kwargs[k] = locals()[k]
853
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
854
+
855
+ latents = callback_outputs.pop("latents", latents)
856
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
857
+
858
+ # call the callback, if provided
859
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
860
+ progress_bar.update()
861
+
862
+ if XLA_AVAILABLE:
863
+ xm.mark_step()
864
+
865
+ self._current_timestep = None
866
+ if output_type == "latent":
867
+ image = latents
868
+ else:
869
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
870
+ latents = latents.to(self.vae.dtype)
871
+ latents_mean = (
872
+ torch.tensor(self.vae.config.latents_mean)
873
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
874
+ .to(latents.device, latents.dtype)
875
+ )
876
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
877
+ latents.device, latents.dtype
878
+ )
879
+ latents = latents / latents_std + latents_mean
880
+ image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
881
+ image = self.image_processor.postprocess(image, output_type=output_type)
882
+
883
+ # Offload all models
884
+ self.maybe_free_model_hooks()
885
+
886
+ if not return_dict:
887
+ return (image,)
888
+
889
+ return QwenImagePipelineOutput(images=image)
qwenimage/qwen_fa3_processor.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Paired with a good language model. Thanks!
3
+ """
4
+
5
+ import torch
6
+ from typing import Optional, Tuple
7
+ from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
8
+
9
+ try:
10
+ from kernels import get_kernel
11
+ _k = get_kernel("kernels-community/vllm-flash-attn3")
12
+ _flash_attn_func = _k.flash_attn_func
13
+ except Exception as e:
14
+ _flash_attn_func = None
15
+ _kernels_err = e
16
+
17
+
18
+ def _ensure_fa3_available():
19
+ if _flash_attn_func is None:
20
+ raise ImportError(
21
+ "FlashAttention-3 via Hugging Face `kernels` is required. "
22
+ "Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
23
+ f"{_kernels_err}"
24
+ )
25
+
26
+ @torch.library.custom_op("flash::flash_attn_func", mutates_args=())
27
+ def flash_attn_func(
28
+ q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
29
+ ) -> torch.Tensor:
30
+ outputs, lse = _flash_attn_func(q, k, v, causal=causal)
31
+ return outputs
32
+
33
+ @flash_attn_func.register_fake
34
+ def _(q, k, v, **kwargs):
35
+ # two outputs:
36
+ # 1. output: (batch, seq_len, num_heads, head_dim)
37
+ # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
38
+ meta_q = torch.empty_like(q).contiguous()
39
+ return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
40
+
41
+
42
+ class QwenDoubleStreamAttnProcessorFA3:
43
+ """
44
+ FA3-based attention processor for Qwen double-stream architecture.
45
+ Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
46
+ accessed via Hugging Face `kernels`.
47
+
48
+ Notes / limitations:
49
+ - General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
50
+ - Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
51
+ - Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
52
+ """
53
+
54
+ _attention_backend = "fa3" # for parity with your other processors, not used internally
55
+
56
+ def __init__(self):
57
+ _ensure_fa3_available()
58
+
59
+ @torch.no_grad()
60
+ def __call__(
61
+ self,
62
+ attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
63
+ hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
64
+ encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
65
+ encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
66
+ attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
67
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
68
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
69
+ if encoder_hidden_states is None:
70
+ raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
71
+ if attention_mask is not None:
72
+ # FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
73
+ raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
74
+
75
+ _ensure_fa3_available()
76
+
77
+ B, S_img, _ = hidden_states.shape
78
+ S_txt = encoder_hidden_states.shape[1]
79
+
80
+ # ---- QKV projections (image/sample stream) ----
81
+ img_q = attn.to_q(hidden_states) # (B, S_img, D)
82
+ img_k = attn.to_k(hidden_states)
83
+ img_v = attn.to_v(hidden_states)
84
+
85
+ # ---- QKV projections (text/context stream) ----
86
+ txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
87
+ txt_k = attn.add_k_proj(encoder_hidden_states)
88
+ txt_v = attn.add_v_proj(encoder_hidden_states)
89
+
90
+ # ---- Reshape to (B, S, H, D_h) ----
91
+ H = attn.heads
92
+ img_q = img_q.unflatten(-1, (H, -1))
93
+ img_k = img_k.unflatten(-1, (H, -1))
94
+ img_v = img_v.unflatten(-1, (H, -1))
95
+
96
+ txt_q = txt_q.unflatten(-1, (H, -1))
97
+ txt_k = txt_k.unflatten(-1, (H, -1))
98
+ txt_v = txt_v.unflatten(-1, (H, -1))
99
+
100
+ # ---- Q/K normalization (per your module contract) ----
101
+ if getattr(attn, "norm_q", None) is not None:
102
+ img_q = attn.norm_q(img_q)
103
+ if getattr(attn, "norm_k", None) is not None:
104
+ img_k = attn.norm_k(img_k)
105
+ if getattr(attn, "norm_added_q", None) is not None:
106
+ txt_q = attn.norm_added_q(txt_q)
107
+ if getattr(attn, "norm_added_k", None) is not None:
108
+ txt_k = attn.norm_added_k(txt_k)
109
+
110
+ # ---- RoPE (Qwen variant) ----
111
+ if image_rotary_emb is not None:
112
+ img_freqs, txt_freqs = image_rotary_emb
113
+ # expects tensors shaped (B, S, H, D_h)
114
+ img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
115
+ img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
116
+ txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
117
+ txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
118
+
119
+ # ---- Joint attention over [text, image] along sequence axis ----
120
+ # Shapes: (B, S_total, H, D_h)
121
+ q = torch.cat([txt_q, img_q], dim=1)
122
+ k = torch.cat([txt_k, img_k], dim=1)
123
+ v = torch.cat([txt_v, img_v], dim=1)
124
+
125
+ # FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
126
+ out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
127
+
128
+ # ---- Back to (B, S, D_model) ----
129
+ out = out.flatten(2, 3).to(q.dtype)
130
+
131
+ # Split back to text / image segments
132
+ txt_attn_out = out[:, :S_txt, :]
133
+ img_attn_out = out[:, S_txt:, :]
134
+
135
+ # ---- Output projections ----
136
+ img_attn_out = attn.to_out[0](img_attn_out)
137
+ if len(attn.to_out) > 1:
138
+ img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
139
+
140
+ txt_attn_out = attn.to_add_out(txt_attn_out)
141
+
142
+ return img_attn_out, txt_attn_out
qwenimage/transformer_qwenimage.py ADDED
@@ -0,0 +1,642 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import functools
16
+ import math
17
+ from typing import Any, Dict, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.nn as nn
21
+ import torch.nn.functional as F
22
+
23
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
+ from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
25
+ from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
26
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
27
+ from diffusers.models.attention import FeedForward, AttentionMixin
28
+ from diffusers.models.attention_dispatch import dispatch_attention_fn
29
+ from diffusers.models.attention_processor import Attention
30
+ from diffusers.models.cache_utils import CacheMixin
31
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
32
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
33
+ from diffusers.models.modeling_utils import ModelMixin
34
+ from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+
40
+ def get_timestep_embedding(
41
+ timesteps: torch.Tensor,
42
+ embedding_dim: int,
43
+ flip_sin_to_cos: bool = False,
44
+ downscale_freq_shift: float = 1,
45
+ scale: float = 1,
46
+ max_period: int = 10000,
47
+ ) -> torch.Tensor:
48
+ """
49
+ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
50
+
51
+ Args
52
+ timesteps (torch.Tensor):
53
+ a 1-D Tensor of N indices, one per batch element. These may be fractional.
54
+ embedding_dim (int):
55
+ the dimension of the output.
56
+ flip_sin_to_cos (bool):
57
+ Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
58
+ downscale_freq_shift (float):
59
+ Controls the delta between frequencies between dimensions
60
+ scale (float):
61
+ Scaling factor applied to the embeddings.
62
+ max_period (int):
63
+ Controls the maximum frequency of the embeddings
64
+ Returns
65
+ torch.Tensor: an [N x dim] Tensor of positional embeddings.
66
+ """
67
+ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
68
+
69
+ half_dim = embedding_dim // 2
70
+ exponent = -math.log(max_period) * torch.arange(
71
+ start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
72
+ )
73
+ exponent = exponent / (half_dim - downscale_freq_shift)
74
+
75
+ emb = torch.exp(exponent).to(timesteps.dtype)
76
+ emb = timesteps[:, None].float() * emb[None, :]
77
+
78
+ # scale embeddings
79
+ emb = scale * emb
80
+
81
+ # concat sine and cosine embeddings
82
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
83
+
84
+ # flip sine and cosine embeddings
85
+ if flip_sin_to_cos:
86
+ emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
87
+
88
+ # zero pad
89
+ if embedding_dim % 2 == 1:
90
+ emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
91
+ return emb
92
+
93
+
94
+ def apply_rotary_emb_qwen(
95
+ x: torch.Tensor,
96
+ freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
97
+ use_real: bool = True,
98
+ use_real_unbind_dim: int = -1,
99
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
100
+ """
101
+ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
102
+ to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
103
+ reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
104
+ tensors contain rotary embeddings and are returned as real tensors.
105
+
106
+ Args:
107
+ x (`torch.Tensor`):
108
+ Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
109
+ freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
110
+
111
+ Returns:
112
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
113
+ """
114
+ if use_real:
115
+ cos, sin = freqs_cis # [S, D]
116
+ cos = cos[None, None]
117
+ sin = sin[None, None]
118
+ cos, sin = cos.to(x.device), sin.to(x.device)
119
+
120
+ if use_real_unbind_dim == -1:
121
+ # Used for flux, cogvideox, hunyuan-dit
122
+ x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
123
+ x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
124
+ elif use_real_unbind_dim == -2:
125
+ # Used for Stable Audio, OmniGen, CogView4 and Cosmos
126
+ x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
127
+ x_rotated = torch.cat([-x_imag, x_real], dim=-1)
128
+ else:
129
+ raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
130
+
131
+ out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
132
+
133
+ return out
134
+ else:
135
+ x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
136
+ freqs_cis = freqs_cis.unsqueeze(1)
137
+ x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
138
+
139
+ return x_out.type_as(x)
140
+
141
+
142
+ class QwenTimestepProjEmbeddings(nn.Module):
143
+ def __init__(self, embedding_dim):
144
+ super().__init__()
145
+
146
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
147
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
148
+
149
+ def forward(self, timestep, hidden_states):
150
+ timesteps_proj = self.time_proj(timestep)
151
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
152
+
153
+ conditioning = timesteps_emb
154
+
155
+ return conditioning
156
+
157
+
158
+ class QwenEmbedRope(nn.Module):
159
+ def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
160
+ super().__init__()
161
+ self.theta = theta
162
+ self.axes_dim = axes_dim
163
+ pos_index = torch.arange(4096)
164
+ neg_index = torch.arange(4096).flip(0) * -1 - 1
165
+ self.pos_freqs = torch.cat(
166
+ [
167
+ self.rope_params(pos_index, self.axes_dim[0], self.theta),
168
+ self.rope_params(pos_index, self.axes_dim[1], self.theta),
169
+ self.rope_params(pos_index, self.axes_dim[2], self.theta),
170
+ ],
171
+ dim=1,
172
+ )
173
+ self.neg_freqs = torch.cat(
174
+ [
175
+ self.rope_params(neg_index, self.axes_dim[0], self.theta),
176
+ self.rope_params(neg_index, self.axes_dim[1], self.theta),
177
+ self.rope_params(neg_index, self.axes_dim[2], self.theta),
178
+ ],
179
+ dim=1,
180
+ )
181
+ self.rope_cache = {}
182
+
183
+ # DO NOT USING REGISTER BUFFER HERE, IT WILL CAUSE COMPLEX NUMBERS LOSE ITS IMAGINARY PART
184
+ self.scale_rope = scale_rope
185
+
186
+ def rope_params(self, index, dim, theta=10000):
187
+ """
188
+ Args:
189
+ index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
190
+ """
191
+ assert dim % 2 == 0
192
+ freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
193
+ freqs = torch.polar(torch.ones_like(freqs), freqs)
194
+ return freqs
195
+
196
+ def forward(self, video_fhw, txt_seq_lens, device):
197
+ """
198
+ Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
199
+ txt_length: [bs] a list of 1 integers representing the length of the text
200
+ """
201
+ if self.pos_freqs.device != device:
202
+ self.pos_freqs = self.pos_freqs.to(device)
203
+ self.neg_freqs = self.neg_freqs.to(device)
204
+
205
+ if isinstance(video_fhw, list):
206
+ video_fhw = video_fhw[0]
207
+ if not isinstance(video_fhw, list):
208
+ video_fhw = [video_fhw]
209
+
210
+ vid_freqs = []
211
+ max_vid_index = 0
212
+ for idx, fhw in enumerate(video_fhw):
213
+ frame, height, width = fhw
214
+ rope_key = f"{idx}_{height}_{width}"
215
+
216
+ if not torch.compiler.is_compiling():
217
+ if rope_key not in self.rope_cache:
218
+ self.rope_cache[rope_key] = self._compute_video_freqs(frame, height, width, idx)
219
+ video_freq = self.rope_cache[rope_key]
220
+ else:
221
+ video_freq = self._compute_video_freqs(frame, height, width, idx)
222
+ video_freq = video_freq.to(device)
223
+ vid_freqs.append(video_freq)
224
+
225
+ if self.scale_rope:
226
+ max_vid_index = max(height // 2, width // 2, max_vid_index)
227
+ else:
228
+ max_vid_index = max(height, width, max_vid_index)
229
+
230
+ max_len = max(txt_seq_lens)
231
+ txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
232
+ vid_freqs = torch.cat(vid_freqs, dim=0)
233
+
234
+ return vid_freqs, txt_freqs
235
+
236
+ @functools.lru_cache(maxsize=None)
237
+ def _compute_video_freqs(self, frame, height, width, idx=0):
238
+ seq_lens = frame * height * width
239
+ freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
240
+ freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
241
+
242
+ freqs_frame = freqs_pos[0][idx : idx + frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
243
+ if self.scale_rope:
244
+ freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
245
+ freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
246
+ freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
247
+ freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
248
+ else:
249
+ freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
250
+ freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
251
+
252
+ freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
253
+ return freqs.clone().contiguous()
254
+
255
+
256
+ class QwenDoubleStreamAttnProcessor2_0:
257
+ """
258
+ Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
259
+ implements joint attention computation where text and image streams are processed together.
260
+ """
261
+
262
+ _attention_backend = None
263
+
264
+ def __init__(self):
265
+ if not hasattr(F, "scaled_dot_product_attention"):
266
+ raise ImportError(
267
+ "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
268
+ )
269
+
270
+ def __call__(
271
+ self,
272
+ attn: Attention,
273
+ hidden_states: torch.FloatTensor, # Image stream
274
+ encoder_hidden_states: torch.FloatTensor = None, # Text stream
275
+ encoder_hidden_states_mask: torch.FloatTensor = None,
276
+ attention_mask: Optional[torch.FloatTensor] = None,
277
+ image_rotary_emb: Optional[torch.Tensor] = None,
278
+ ) -> torch.FloatTensor:
279
+ if encoder_hidden_states is None:
280
+ raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
281
+
282
+ seq_txt = encoder_hidden_states.shape[1]
283
+
284
+ # Compute QKV for image stream (sample projections)
285
+ img_query = attn.to_q(hidden_states)
286
+ img_key = attn.to_k(hidden_states)
287
+ img_value = attn.to_v(hidden_states)
288
+
289
+ # Compute QKV for text stream (context projections)
290
+ txt_query = attn.add_q_proj(encoder_hidden_states)
291
+ txt_key = attn.add_k_proj(encoder_hidden_states)
292
+ txt_value = attn.add_v_proj(encoder_hidden_states)
293
+
294
+ # Reshape for multi-head attention
295
+ img_query = img_query.unflatten(-1, (attn.heads, -1))
296
+ img_key = img_key.unflatten(-1, (attn.heads, -1))
297
+ img_value = img_value.unflatten(-1, (attn.heads, -1))
298
+
299
+ txt_query = txt_query.unflatten(-1, (attn.heads, -1))
300
+ txt_key = txt_key.unflatten(-1, (attn.heads, -1))
301
+ txt_value = txt_value.unflatten(-1, (attn.heads, -1))
302
+
303
+ # Apply QK normalization
304
+ if attn.norm_q is not None:
305
+ img_query = attn.norm_q(img_query)
306
+ if attn.norm_k is not None:
307
+ img_key = attn.norm_k(img_key)
308
+ if attn.norm_added_q is not None:
309
+ txt_query = attn.norm_added_q(txt_query)
310
+ if attn.norm_added_k is not None:
311
+ txt_key = attn.norm_added_k(txt_key)
312
+
313
+ # Apply RoPE
314
+ if image_rotary_emb is not None:
315
+ img_freqs, txt_freqs = image_rotary_emb
316
+ img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
317
+ img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
318
+ txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
319
+ txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
320
+
321
+ # Concatenate for joint attention
322
+ # Order: [text, image]
323
+ joint_query = torch.cat([txt_query, img_query], dim=1)
324
+ joint_key = torch.cat([txt_key, img_key], dim=1)
325
+ joint_value = torch.cat([txt_value, img_value], dim=1)
326
+
327
+ # Compute joint attention
328
+ joint_hidden_states = dispatch_attention_fn(
329
+ joint_query,
330
+ joint_key,
331
+ joint_value,
332
+ attn_mask=attention_mask,
333
+ dropout_p=0.0,
334
+ is_causal=False,
335
+ backend=self._attention_backend,
336
+ )
337
+
338
+ # Reshape back
339
+ joint_hidden_states = joint_hidden_states.flatten(2, 3)
340
+ joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
341
+
342
+ # Split attention outputs back
343
+ txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
344
+ img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
345
+
346
+ # Apply output projections
347
+ img_attn_output = attn.to_out[0](img_attn_output)
348
+ if len(attn.to_out) > 1:
349
+ img_attn_output = attn.to_out[1](img_attn_output) # dropout
350
+
351
+ txt_attn_output = attn.to_add_out(txt_attn_output)
352
+
353
+ return img_attn_output, txt_attn_output
354
+
355
+
356
+ @maybe_allow_in_graph
357
+ class QwenImageTransformerBlock(nn.Module):
358
+ def __init__(
359
+ self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
360
+ ):
361
+ super().__init__()
362
+
363
+ self.dim = dim
364
+ self.num_attention_heads = num_attention_heads
365
+ self.attention_head_dim = attention_head_dim
366
+
367
+ # Image processing modules
368
+ self.img_mod = nn.Sequential(
369
+ nn.SiLU(),
370
+ nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
371
+ )
372
+ self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
373
+ self.attn = Attention(
374
+ query_dim=dim,
375
+ cross_attention_dim=None, # Enable cross attention for joint computation
376
+ added_kv_proj_dim=dim, # Enable added KV projections for text stream
377
+ dim_head=attention_head_dim,
378
+ heads=num_attention_heads,
379
+ out_dim=dim,
380
+ context_pre_only=False,
381
+ bias=True,
382
+ processor=QwenDoubleStreamAttnProcessor2_0(),
383
+ qk_norm=qk_norm,
384
+ eps=eps,
385
+ )
386
+ self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
387
+ self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
388
+
389
+ # Text processing modules
390
+ self.txt_mod = nn.Sequential(
391
+ nn.SiLU(),
392
+ nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
393
+ )
394
+ self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
395
+ # Text doesn't need separate attention - it's handled by img_attn joint computation
396
+ self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
397
+ self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
398
+
399
+ def _modulate(self, x, mod_params):
400
+ """Apply modulation to input tensor"""
401
+ shift, scale, gate = mod_params.chunk(3, dim=-1)
402
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
403
+
404
+ def forward(
405
+ self,
406
+ hidden_states: torch.Tensor,
407
+ encoder_hidden_states: torch.Tensor,
408
+ encoder_hidden_states_mask: torch.Tensor,
409
+ temb: torch.Tensor,
410
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
411
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
412
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
413
+ # Get modulation parameters for both streams
414
+ img_mod_params = self.img_mod(temb) # [B, 6*dim]
415
+ txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
416
+
417
+ # Split modulation parameters for norm1 and norm2
418
+ img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
419
+ txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
420
+
421
+ # Process image stream - norm1 + modulation
422
+ img_normed = self.img_norm1(hidden_states)
423
+ img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
424
+
425
+ # Process text stream - norm1 + modulation
426
+ txt_normed = self.txt_norm1(encoder_hidden_states)
427
+ txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
428
+
429
+ # Use QwenAttnProcessor2_0 for joint attention computation
430
+ # This directly implements the DoubleStreamLayerMegatron logic:
431
+ # 1. Computes QKV for both streams
432
+ # 2. Applies QK normalization and RoPE
433
+ # 3. Concatenates and runs joint attention
434
+ # 4. Splits results back to separate streams
435
+ joint_attention_kwargs = joint_attention_kwargs or {}
436
+ attn_output = self.attn(
437
+ hidden_states=img_modulated, # Image stream (will be processed as "sample")
438
+ encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
439
+ encoder_hidden_states_mask=encoder_hidden_states_mask,
440
+ image_rotary_emb=image_rotary_emb,
441
+ **joint_attention_kwargs,
442
+ )
443
+
444
+ # QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
445
+ img_attn_output, txt_attn_output = attn_output
446
+
447
+ # Apply attention gates and add residual (like in Megatron)
448
+ hidden_states = hidden_states + img_gate1 * img_attn_output
449
+ encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
450
+
451
+ # Process image stream - norm2 + MLP
452
+ img_normed2 = self.img_norm2(hidden_states)
453
+ img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
454
+ img_mlp_output = self.img_mlp(img_modulated2)
455
+ hidden_states = hidden_states + img_gate2 * img_mlp_output
456
+
457
+ # Process text stream - norm2 + MLP
458
+ txt_normed2 = self.txt_norm2(encoder_hidden_states)
459
+ txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
460
+ txt_mlp_output = self.txt_mlp(txt_modulated2)
461
+ encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
462
+
463
+ # Clip to prevent overflow for fp16
464
+ if encoder_hidden_states.dtype == torch.float16:
465
+ encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
466
+ if hidden_states.dtype == torch.float16:
467
+ hidden_states = hidden_states.clip(-65504, 65504)
468
+
469
+ return encoder_hidden_states, hidden_states
470
+
471
+
472
+ class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
473
+ """
474
+ The Transformer model introduced in Qwen.
475
+
476
+ Args:
477
+ patch_size (`int`, defaults to `2`):
478
+ Patch size to turn the input data into small patches.
479
+ in_channels (`int`, defaults to `64`):
480
+ The number of channels in the input.
481
+ out_channels (`int`, *optional*, defaults to `None`):
482
+ The number of channels in the output. If not specified, it defaults to `in_channels`.
483
+ num_layers (`int`, defaults to `60`):
484
+ The number of layers of dual stream DiT blocks to use.
485
+ attention_head_dim (`int`, defaults to `128`):
486
+ The number of dimensions to use for each attention head.
487
+ num_attention_heads (`int`, defaults to `24`):
488
+ The number of attention heads to use.
489
+ joint_attention_dim (`int`, defaults to `3584`):
490
+ The number of dimensions to use for the joint attention (embedding/channel dimension of
491
+ `encoder_hidden_states`).
492
+ guidance_embeds (`bool`, defaults to `False`):
493
+ Whether to use guidance embeddings for guidance-distilled variant of the model.
494
+ axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
495
+ The dimensions to use for the rotary positional embeddings.
496
+ """
497
+
498
+ _supports_gradient_checkpointing = True
499
+ _no_split_modules = ["QwenImageTransformerBlock"]
500
+ _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
501
+ _repeated_blocks = ["QwenImageTransformerBlock"]
502
+
503
+ @register_to_config
504
+ def __init__(
505
+ self,
506
+ patch_size: int = 2,
507
+ in_channels: int = 64,
508
+ out_channels: Optional[int] = 16,
509
+ num_layers: int = 60,
510
+ attention_head_dim: int = 128,
511
+ num_attention_heads: int = 24,
512
+ joint_attention_dim: int = 3584,
513
+ guidance_embeds: bool = False, # TODO: this should probably be removed
514
+ axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
515
+ ):
516
+ super().__init__()
517
+ self.out_channels = out_channels or in_channels
518
+ self.inner_dim = num_attention_heads * attention_head_dim
519
+
520
+ self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
521
+
522
+ self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
523
+
524
+ self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
525
+
526
+ self.img_in = nn.Linear(in_channels, self.inner_dim)
527
+ self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
528
+
529
+ self.transformer_blocks = nn.ModuleList(
530
+ [
531
+ QwenImageTransformerBlock(
532
+ dim=self.inner_dim,
533
+ num_attention_heads=num_attention_heads,
534
+ attention_head_dim=attention_head_dim,
535
+ )
536
+ for _ in range(num_layers)
537
+ ]
538
+ )
539
+
540
+ self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
541
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
542
+
543
+ self.gradient_checkpointing = False
544
+
545
+ def forward(
546
+ self,
547
+ hidden_states: torch.Tensor,
548
+ encoder_hidden_states: torch.Tensor = None,
549
+ encoder_hidden_states_mask: torch.Tensor = None,
550
+ timestep: torch.LongTensor = None,
551
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
552
+ guidance: torch.Tensor = None, # TODO: this should probably be removed
553
+ attention_kwargs: Optional[Dict[str, Any]] = None,
554
+ return_dict: bool = True,
555
+ ) -> Union[torch.Tensor, Transformer2DModelOutput]:
556
+ """
557
+ The [`QwenTransformer2DModel`] forward method.
558
+
559
+ Args:
560
+ hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
561
+ Input `hidden_states`.
562
+ encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
563
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
564
+ encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
565
+ Mask of the input conditions.
566
+ timestep ( `torch.LongTensor`):
567
+ Used to indicate denoising step.
568
+ attention_kwargs (`dict`, *optional*):
569
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
570
+ `self.processor` in
571
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
572
+ return_dict (`bool`, *optional*, defaults to `True`):
573
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
574
+ tuple.
575
+
576
+ Returns:
577
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
578
+ `tuple` where the first element is the sample tensor.
579
+ """
580
+ if attention_kwargs is not None:
581
+ attention_kwargs = attention_kwargs.copy()
582
+ lora_scale = attention_kwargs.pop("scale", 1.0)
583
+ else:
584
+ lora_scale = 1.0
585
+
586
+ if USE_PEFT_BACKEND:
587
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
588
+ scale_lora_layers(self, lora_scale)
589
+ else:
590
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
591
+ logger.warning(
592
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
593
+ )
594
+
595
+ hidden_states = self.img_in(hidden_states)
596
+
597
+ timestep = timestep.to(hidden_states.dtype)
598
+ encoder_hidden_states = self.txt_norm(encoder_hidden_states)
599
+ encoder_hidden_states = self.txt_in(encoder_hidden_states)
600
+
601
+ if guidance is not None:
602
+ guidance = guidance.to(hidden_states.dtype) * 1000
603
+
604
+ temb = (
605
+ self.time_text_embed(timestep, hidden_states)
606
+ if guidance is None
607
+ else self.time_text_embed(timestep, guidance, hidden_states)
608
+ )
609
+
610
+ for index_block, block in enumerate(self.transformer_blocks):
611
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
612
+ encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
613
+ block,
614
+ hidden_states,
615
+ encoder_hidden_states,
616
+ encoder_hidden_states_mask,
617
+ temb,
618
+ image_rotary_emb,
619
+ )
620
+
621
+ else:
622
+ encoder_hidden_states, hidden_states = block(
623
+ hidden_states=hidden_states,
624
+ encoder_hidden_states=encoder_hidden_states,
625
+ encoder_hidden_states_mask=encoder_hidden_states_mask,
626
+ temb=temb,
627
+ image_rotary_emb=image_rotary_emb,
628
+ joint_attention_kwargs=attention_kwargs,
629
+ )
630
+
631
+ # Use only the image part (hidden_states) from the dual-stream blocks
632
+ hidden_states = self.norm_out(hidden_states, temb)
633
+ output = self.proj_out(hidden_states)
634
+
635
+ if USE_PEFT_BACKEND:
636
+ # remove `lora_scale` from each PEFT layer
637
+ unscale_lora_layers(self, lora_scale)
638
+
639
+ if not return_dict:
640
+ return (output,)
641
+
642
+ return Transformer2DModelOutput(sample=output)
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ git+https://github.com/huggingface/diffusers.git
2
+ transformers
3
+ accelerate
4
+ safetensors
5
+ sentencepiece
6
+ dashscope
7
+ kernels
8
+ torchvision
9
+ peft
10
+ torchao==0.11.0