import gradio as gr from gradio_image_slider import ImageSlider import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image import os # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda'),torch_dtype=dtype).to(device) pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", weight_name="qwen-edit-enhance_64-v3_000001500.safetensors", adapter_name="upscale") pipe.set_adapters(["upscale"], adapter_weights=[1.]) pipe.fuse_lora(adapter_names=["upscale"], lora_scale=1.0) pipe.unload_lora_weights() pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") MAX_SEED = np.iinfo(np.int32).max @spaces.GPU def upscale_image( image, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, progress=gr.Progress(track_tqdm=True) ): prompt = "Upscale and enhance this image with high quality details" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) pil_images = [] if image is not None: if isinstance(image, Image.Image): pil_images.append(image.convert("RGB")) elif hasattr(image, "name"): pil_images.append(Image.open(image.name).convert("RGB")) if len(pil_images) == 0: raise gr.Error("Please upload an image first.") result = pipe( image=pil_images, prompt=prompt, height=height if height != 0 else None, width=width if width != 0 else None, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1, ).images[0] return (image, result), seed # --- UI --- css = ''' #col-container { max-width: 900px; margin: 0 auto; padding: 2rem; font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; } .gradio-container { background: linear-gradient(to bottom, #f5f5f7, #ffffff); } #title { text-align: center; font-size: 2.5rem; font-weight: 600; color: #1d1d1f; margin-bottom: 0.5rem; } #description { text-align: center; font-size: 1.1rem; color: #6e6e73; margin-bottom: 2rem; } .image-container { border-radius: 18px; overflow: hidden; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.07); } #convert-btn { background: linear-gradient(180deg, #0071e3 0%, #0077ed 100%); border: none; border-radius: 12px; color: white; font-size: 1.1rem; font-weight: 500; padding: 0.75rem 2rem; transition: all 0.3s ease; } #convert-btn:hover { transform: translateY(-2px); box-shadow: 0 8px 16px rgba(0, 113, 227, 0.3); } ''' def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) # Ensure dimensions are multiples of 8 new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# 🔍 Image Upscaler", elem_id="title") gr.Markdown( """ Upscale and enhance your images with AI-powered quality improvement ✨
Built with anycoder
""", elem_id="description" ) with gr.Column(): image = gr.Image( label="Upload Image", type="pil", elem_classes="image-container" ) with gr.Accordion("⚙️ Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) true_guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024, visible=False) width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024, visible=False) upscale_btn = gr.Button("Upscale Image", variant="primary", elem_id="convert-btn", size="lg") result = ImageSlider( label="Before / After", interactive=False, elem_classes="image-container" ) inputs = [ image, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width ] outputs = [result, seed] # Upscale button click upscale_btn.click( fn=upscale_image, inputs=inputs, outputs=outputs ) # Image upload triggers dimension update image.upload( fn=update_dimensions_on_upload, inputs=[image], outputs=[width, height] ) demo.launch()