Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
from typing import List, Tuple
|
| 6 |
+
from transformers import VoxtralForConditionalGeneration, AutoProcessor
|
| 7 |
+
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
repo_id = "mistralai/Voxtral-Mini-3B-2507"
|
| 10 |
+
|
| 11 |
+
processor = AutoProcessor.from_pretrained(repo_id)
|
| 12 |
+
model = VoxtralForConditionalGeneration.from_pretrained(
|
| 13 |
+
repo_id,
|
| 14 |
+
torch_dtype=torch.bfloat16,
|
| 15 |
+
device_map=device,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
def respond(audio_files: List[str], question: str) -> Tuple[str, List[str]]:
|
| 19 |
+
if not audio_files:
|
| 20 |
+
return "Please upload at least one audio file.", []
|
| 21 |
+
|
| 22 |
+
conversation = [
|
| 23 |
+
{
|
| 24 |
+
"role": "user",
|
| 25 |
+
"content": [
|
| 26 |
+
{"type": "audio", "path": path} for path in audio_files
|
| 27 |
+
] + [{"type": "text", "text": question}],
|
| 28 |
+
}
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
inputs = processor.apply_chat_template(conversation)
|
| 32 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 36 |
+
decoded = processor.batch_decode(
|
| 37 |
+
outputs[:, inputs.input_ids.shape[1]:],
|
| 38 |
+
skip_special_tokens=True,
|
| 39 |
+
)
|
| 40 |
+
return decoded[0], audio_files
|
| 41 |
+
|
| 42 |
+
demo = gr.Interface(
|
| 43 |
+
fn=respond,
|
| 44 |
+
inputs=[
|
| 45 |
+
gr.Audio(type="filepath", label="Audio files", file_count="multiple"),
|
| 46 |
+
gr.Textbox(lines=2, placeholder="Ask something about the audio(s)...", label="Question"),
|
| 47 |
+
],
|
| 48 |
+
outputs=[
|
| 49 |
+
gr.Textbox(label="Answer"),
|
| 50 |
+
gr.Gallery(label="Uploaded audio files"),
|
| 51 |
+
],
|
| 52 |
+
title="Voxtral-Mini-3B-2507 Audio Q&A",
|
| 53 |
+
description="Upload one or more audio files and ask any question about them.",
|
| 54 |
+
examples=[
|
| 55 |
+
[
|
| 56 |
+
[
|
| 57 |
+
"https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
|
| 58 |
+
"https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
|
| 59 |
+
],
|
| 60 |
+
"What sport and what nursery rhyme are referenced?",
|
| 61 |
+
]
|
| 62 |
+
],
|
| 63 |
+
cache_examples=False,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
demo.launch()
|