Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from snac import SNAC | |
| import soundfile as sf | |
| import numpy as np | |
| import tempfile | |
| import spaces | |
| # Load models at startup | |
| print("Loading Maya1 model...") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "maya-research/maya1", | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| "maya-research/maya1", | |
| trust_remote_code=True | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| print("Loading SNAC audio decoder...") | |
| snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval() | |
| def generate_speech(text, voice_description): | |
| """Generate speech from text using Maya1 model with ZeroGPU""" | |
| if not text.strip(): | |
| raise gr.Error("Please enter some text to convert to speech!") | |
| if not voice_description.strip(): | |
| voice_description = "Realistic voice with neutral tone and conversational pacing." | |
| try: | |
| # Move models to GPU | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| snac_model.to(device) | |
| # Create prompt | |
| prompt = f'<description="{voice_description}"> {text}' | |
| # Tokenize input | |
| inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
| # Generate | |
| with torch.inference_mode(): | |
| outputs = model.generate( | |
| input_ids=inputs['input_ids'], | |
| attention_mask=inputs.get('attention_mask', None), | |
| max_new_tokens=1000, | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=None, | |
| ) | |
| # Extract SNAC audio tokens | |
| generated_ids = outputs[0, inputs['input_ids'].shape[1]:] | |
| snac_tokens = [t.item() for t in generated_ids if 128266 <= t <= 156937] | |
| if len(snac_tokens) < 7: | |
| raise gr.Error( | |
| f"Not enough audio tokens generated ({len(snac_tokens)}). " | |
| f"Try using longer text or different voice description." | |
| ) | |
| # Decode SNAC tokens to audio frames | |
| frames = len(snac_tokens) // 7 | |
| codes = [[], [], []] | |
| for i in range(frames): | |
| s = snac_tokens[i*7:(i+1)*7] | |
| codes[0].append((s[0]-128266) % 4096) | |
| codes[1].extend([(s[1]-128266) % 4096, (s[4]-128266) % 4096]) | |
| codes[2].extend([ | |
| (s[2]-128266) % 4096, | |
| (s[3]-128266) % 4096, | |
| (s[5]-128266) % 4096, | |
| (s[6]-128266) % 4096 | |
| ]) | |
| # Generate final audio with SNAC decoder | |
| codes_tensor = [ | |
| torch.tensor(c, dtype=torch.long, device=device).unsqueeze(0) | |
| for c in codes | |
| ] | |
| with torch.inference_mode(): | |
| audio = snac_model.decoder( | |
| snac_model.quantizer.from_codes(codes_tensor) | |
| )[0, 0].cpu().numpy() | |
| # Save to temporary file | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
| sf.write(f.name, audio, 24000) | |
| return f.name | |
| except Exception as e: | |
| import traceback | |
| traceback.print_exc() | |
| raise gr.Error(f"Error generating speech: {str(e)}") | |
| # Examples | |
| examples = [ | |
| [ | |
| "Hello! This is Maya1 <laugh> the best open source voice AI model with emotions.", | |
| "Realistic male voice in the 30s age with american accent. Normal pitch, warm timbre, conversational pacing." | |
| ], | |
| [ | |
| "I'm so excited to share this amazing news with you! This is incredible and wonderful!", | |
| "Energetic female voice with enthusiastic tone. Higher pitch, bright timbre, upbeat pacing." | |
| ], | |
| [ | |
| "In a world of constant change, one thing remains certain: the power of human connection and understanding.", | |
| "Deep male voice with authoritative tone. Low pitch, resonant timbre, steady pacing." | |
| ], | |
| ] | |
| # Create Gradio interface | |
| with gr.Blocks(theme=gr.themes.Soft(), title="Maya1 Text-to-Speech") as demo: | |
| gr.Markdown( | |
| """ | |
| # ๐๏ธ Maya1 Text-to-Speech | |
| Generate emotional and realistic speech with natural language voice design | |
| Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder) | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox( | |
| label="Text to Speak", | |
| placeholder="Enter your text here... You can use <laugh>, <sigh>, and other emotion tags!", | |
| lines=5, | |
| value="Hello! This is Maya1 <laugh> the best open source voice AI model with emotions." | |
| ) | |
| voice_description = gr.Textbox( | |
| label="Voice Description", | |
| placeholder="Describe the voice characteristics (age, gender, accent, pitch, timbre, pacing)...", | |
| lines=3, | |
| value="Realistic male voice in the 30s age with american accent. Normal pitch, warm timbre, conversational pacing." | |
| ) | |
| generate_btn = gr.Button("๐ค Generate Speech", variant="primary", size="lg") | |
| with gr.Column(): | |
| audio_output = gr.Audio( | |
| label="Generated Speech", | |
| type="filepath" | |
| ) | |
| gr.Markdown(""" | |
| ### ๐ก Tips | |
| - Use emotion tags: `<laugh>`, `<sigh>`, `<whisper>`, `<shout>` | |
| - Describe voice with: age, gender, accent, pitch, timbre, pacing | |
| - Longer text works better (20+ words recommended) | |
| ### About | |
| Maya1 is an open-source voice AI model that generates realistic, emotional speech from text using natural language voice descriptions. | |
| """) | |
| # Generate speech button | |
| generate_btn.click( | |
| fn=generate_speech, | |
| inputs=[text_input, voice_description], | |
| outputs=[audio_output] | |
| ) | |
| # Examples section | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[text_input, voice_description], | |
| outputs=[audio_output], | |
| fn=generate_speech, | |
| cache_examples=False, | |
| label="Example Prompts" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |