# RTX 5080 (Blackwell) GPU Support ✅ ## Good News! The NVIDIA GeForce RTX 5080 uses the Blackwell architecture with compute capability **sm_120** (12.0). **PyTorch nightly builds with CUDA 12.8+ now support RTX 5080!** ## Current Status - **GPU Model**: NVIDIA GeForce RTX 5080 - **Compute Capability**: sm_120 (12.0) - **Required CUDA Version**: 12.8+ - **Required PyTorch**: Nightly builds with CUDA 12.8 - **Support Status**: ✅ **Supported** (via nightly builds) ## Automatic Installation Our `setup.py` script automatically detects RTX 5080 and installs the correct PyTorch version: ```bash # Create and activate virtual environment python -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate # Run smart installer (automatically installs PyTorch nightly for RTX 5080) python setup.py ``` The script will: 1. 🔍 Detect your RTX 5080 GPU 2. 📦 Install PyTorch nightly with CUDA 12.8 support 3. ✅ Verify GPU compatibility 4. 🚀 Enable full GPU acceleration ## Running the Application After installation, just run: ```bash python app.py ``` You'll see: ``` ✅ Detected Blackwell GPU (NVIDIA GeForce RTX 5080) Installing PyTorch nightly with CUDA 12.8 support (sm_120 compatible) 🖥️ Local - GPU (NVIDIA GeForce RTX 5080) 📍 Using device: cuda ``` ## Manual Installation (Alternative) If you prefer manual installation: ```bash # Uninstall existing PyTorch pip uninstall torch torchvision torchaudio -y # Install PyTorch nightly with CUDA 12.8 pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128 ``` ## Verification Check if your RTX 5080 is working: ```python import torch print(f"PyTorch: {torch.__version__}") print(f"CUDA available: {torch.cuda.is_available()}") print(f"GPU name: {torch.cuda.get_device_name(0)}") print(f"Compute capability: {torch.cuda.get_device_capability(0)}") ``` Expected output: ``` PyTorch: 2.7.0.dev20250310+cu128 CUDA available: True GPU name: NVIDIA GeForce RTX 5080 Compute capability: (12, 0) ``` ## Alternative Solutions ### 1. Build PyTorch from Source (Advanced) ```bash # Clone PyTorch git clone --recursive https://github.com/pytorch/pytorch cd pytorch # Set CUDA architecture flags export TORCH_CUDA_ARCH_LIST="12.0" export CUDA_HOME=/usr/local/cuda # Build (takes 1-2 hours) python setup.py develop ``` **Note**: This is time-consuming and may not work until PyTorch officially adds sm_120 support. ### 2. Use Older GPU (Temporary) If available, use an older GPU (RTX 40xx, 30xx, etc.) that has compute capability ≤ 9.0. ### 3. Wait for Official Support The most practical approach is to use CPU mode until PyTorch adds official support. ## Performance Notes **CPU Mode Performance**: - Inference is slower but functional - Small models (< 1B parameters): Acceptable - Large models (> 7B parameters): Very slow - Consider using smaller models for now ## Questions? Check PyTorch compatibility: ```bash python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}'); print(f'Compute capability: {torch.cuda.get_device_capability(0) if torch.cuda.is_available() else \"N/A\"}')" ```