Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -200,10 +200,10 @@ def document_retrieval_chroma(prompt):
|
|
| 200 |
#ChromaDb um die embedings zu speichern
|
| 201 |
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
|
| 202 |
print ("Chroma DB bereit ...................")
|
| 203 |
-
llm = ChatOpenAI(temperature=0.5)
|
| 204 |
-
retriever = SelfQueryRetriever.from_llm(llm,vectorstore,document_content_description=prompt,enable_limit=True,verbose=True,)
|
| 205 |
|
| 206 |
-
return db
|
| 207 |
|
| 208 |
|
| 209 |
|
|
@@ -218,10 +218,11 @@ def llm_chain(prompt):
|
|
| 218 |
|
| 219 |
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen
|
| 220 |
#prompt mit RAG!!!
|
| 221 |
-
def rag_chain(prompt, db
|
| 222 |
rag_template = "Nutze die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: "
|
| 223 |
-
retrieved_chunks
|
| 224 |
-
|
|
|
|
| 225 |
neu_prompt = rag_template
|
| 226 |
for i, chunk in enumerate(retrieved_chunks):
|
| 227 |
neu_prompt += f"{i+1}. {chunk}\n"
|
|
@@ -281,9 +282,9 @@ def generate(text, history, rag_option, model_option, temperature=0.5, max_new_
|
|
| 281 |
if not splittet:
|
| 282 |
splits = document_loading_splitting()
|
| 283 |
document_storage_chroma(splits)
|
| 284 |
-
db
|
| 285 |
#mit RAG:
|
| 286 |
-
neu_text_mit_chunks = rag_chain(text, db
|
| 287 |
#für Chat LLM:
|
| 288 |
#prompt = generate_prompt_with_history_openai(neu_text_mit_chunks, history)
|
| 289 |
#als reiner prompt:
|
|
|
|
| 200 |
#ChromaDb um die embedings zu speichern
|
| 201 |
db = Chroma(embedding_function = embeddings, persist_directory = PATH_WORK + CHROMA_DIR)
|
| 202 |
print ("Chroma DB bereit ...................")
|
| 203 |
+
#llm = ChatOpenAI(temperature=0.5)
|
| 204 |
+
#retriever = SelfQueryRetriever.from_llm(llm,vectorstore,document_content_description=prompt,enable_limit=True,verbose=True,)
|
| 205 |
|
| 206 |
+
return db #, retriever
|
| 207 |
|
| 208 |
|
| 209 |
|
|
|
|
| 218 |
|
| 219 |
#langchain nutzen, um prompt an llm zu leiten, aber vorher in der VektorDB suchen, um passende splits zum Prompt hinzuzufügen
|
| 220 |
#prompt mit RAG!!!
|
| 221 |
+
def rag_chain(prompt, db):
|
| 222 |
rag_template = "Nutze die folgenden Kontext Teile am Ende, um die Frage zu beantworten . " + template + "Frage: " + prompt + "Kontext Teile: "
|
| 223 |
+
retrieved_chunks = db.similarity_search(prompt)
|
| 224 |
+
#retrieved_chunks = retriever.get_relevant_documents(prompt)
|
| 225 |
+
|
| 226 |
neu_prompt = rag_template
|
| 227 |
for i, chunk in enumerate(retrieved_chunks):
|
| 228 |
neu_prompt += f"{i+1}. {chunk}\n"
|
|
|
|
| 282 |
if not splittet:
|
| 283 |
splits = document_loading_splitting()
|
| 284 |
document_storage_chroma(splits)
|
| 285 |
+
db = document_retrieval_chroma()
|
| 286 |
#mit RAG:
|
| 287 |
+
neu_text_mit_chunks = rag_chain(text, db)
|
| 288 |
#für Chat LLM:
|
| 289 |
#prompt = generate_prompt_with_history_openai(neu_text_mit_chunks, history)
|
| 290 |
#als reiner prompt:
|