File size: 29,772 Bytes
257f706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from copy import deepcopy
from functools import partial

import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision.transforms.functional as TF
from decord import VideoReader
from PIL import Image
from safetensors import safe_open
from torchvision import transforms
from tqdm import tqdm

from .distributed.fsdp import shard_model
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
from .distributed.util import get_world_size
from .modules.s2v.audio_encoder import AudioEncoder
from .modules.s2v.model_s2v import WanModel_S2V, sp_attn_forward_s2v
from .modules.t5 import T5EncoderModel
from .modules.vae2_1 import Wan2_1_VAE
from .utils.fm_solvers import (
    FlowDPMSolverMultistepScheduler,
    get_sampling_sigmas,
    retrieve_timesteps,
)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler


def load_safetensors(path):
    tensors = {}
    with safe_open(path, framework="pt", device="cpu") as f:
        for key in f.keys():
            tensors[key] = f.get_tensor(key)
    return tensors


class WanS2V:

    def __init__(

        self,

        config,

        checkpoint_dir,

        device_id=0,

        rank=0,

        t5_fsdp=False,

        dit_fsdp=False,

        use_sp=False,

        t5_cpu=False,

        init_on_cpu=True,

        convert_model_dtype=False,

    ):
        r"""

        Initializes the image-to-video generation model components.



        Args:

            config (EasyDict):

                Object containing model parameters initialized from config.py

            checkpoint_dir (`str`):

                Path to directory containing model checkpoints

            device_id (`int`,  *optional*, defaults to 0):

                Id of target GPU device

            rank (`int`,  *optional*, defaults to 0):

                Process rank for distributed training

            t5_fsdp (`bool`, *optional*, defaults to False):

                Enable FSDP sharding for T5 model

            dit_fsdp (`bool`, *optional*, defaults to False):

                Enable FSDP sharding for DiT model

            use_sp (`bool`, *optional*, defaults to False):

                Enable distribution strategy of sequence parallel.

            t5_cpu (`bool`, *optional*, defaults to False):

                Whether to place T5 model on CPU. Only works without t5_fsdp.

            init_on_cpu (`bool`, *optional*, defaults to True):

                Enable initializing Transformer Model on CPU. Only works without FSDP or USP.

            convert_model_dtype (`bool`, *optional*, defaults to False):

                Convert DiT model parameters dtype to 'config.param_dtype'.

                Only works without FSDP.

        """
        self.device = torch.device(f"cuda:{device_id}")
        self.config = config
        self.rank = rank
        self.t5_cpu = t5_cpu
        self.init_on_cpu = init_on_cpu

        self.num_train_timesteps = config.num_train_timesteps
        self.param_dtype = config.param_dtype

        if t5_fsdp or dit_fsdp or use_sp:
            self.init_on_cpu = False

        shard_fn = partial(shard_model, device_id=device_id)
        self.text_encoder = T5EncoderModel(
            text_len=config.text_len,
            dtype=config.t5_dtype,
            device=torch.device('cpu'),
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
            shard_fn=shard_fn if t5_fsdp else None,
        )

        self.vae = Wan2_1_VAE(
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
            device=self.device)

        logging.info(f"Creating WanModel from {checkpoint_dir}")
        if not dit_fsdp:
            self.noise_model = WanModel_S2V.from_pretrained(
                checkpoint_dir,
                torch_dtype=self.param_dtype,
                device_map=self.device)
        else:
            self.noise_model = WanModel_S2V.from_pretrained(
                checkpoint_dir, torch_dtype=self.param_dtype)

        self.noise_model = self._configure_model(
            model=self.noise_model,
            use_sp=use_sp,
            dit_fsdp=dit_fsdp,
            shard_fn=shard_fn,
            convert_model_dtype=convert_model_dtype)

        self.audio_encoder = AudioEncoder(
            model_id=os.path.join(checkpoint_dir,
                                  "wav2vec2-large-xlsr-53-english"))

        if use_sp:
            self.sp_size = get_world_size()
        else:
            self.sp_size = 1

        self.sample_neg_prompt = config.sample_neg_prompt
        self.motion_frames = config.transformer.motion_frames
        self.drop_first_motion = config.drop_first_motion
        self.fps = config.sample_fps
        self.audio_sample_m = 0

    def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,

                         convert_model_dtype):
        """

        Configures a model object. This includes setting evaluation modes,

        applying distributed parallel strategy, and handling device placement.



        Args:

            model (torch.nn.Module):

                The model instance to configure.

            use_sp (`bool`):

                Enable distribution strategy of sequence parallel.

            dit_fsdp (`bool`):

                Enable FSDP sharding for DiT model.

            shard_fn (callable):

                The function to apply FSDP sharding.

            convert_model_dtype (`bool`):

                Convert DiT model parameters dtype to 'config.param_dtype'.

                Only works without FSDP.



        Returns:

            torch.nn.Module:

                The configured model.

        """
        model.eval().requires_grad_(False)
        if use_sp:
            for block in model.blocks:
                block.self_attn.forward = types.MethodType(
                    sp_attn_forward_s2v, block.self_attn)
            model.use_context_parallel = True

        if dist.is_initialized():
            dist.barrier()

        if dit_fsdp:
            model = shard_fn(model)
        else:
            if convert_model_dtype:
                model.to(self.param_dtype)
            if not self.init_on_cpu:
                model.to(self.device)

        return model

    def get_size_less_than_area(self,

                                height,

                                width,

                                target_area=1024 * 704,

                                divisor=64):
        if height * width <= target_area:
            # If the original image area is already less than or equal to the target,
            # no resizing is needed—just padding. Still need to ensure that the padded area doesn't exceed the target.
            max_upper_area = target_area
            min_scale = 0.1
            max_scale = 1.0
        else:
            # Resize to fit within the target area and then pad to multiples of `divisor`
            max_upper_area = target_area  # Maximum allowed total pixel count after padding
            d = divisor - 1
            b = d * (height + width)
            a = height * width
            c = d**2 - max_upper_area

            # Calculate scale boundaries using quadratic equation
            min_scale = (-b + math.sqrt(b**2 - 2 * a * c)) / (
                2 * a)  # Scale when maximum padding is applied
            max_scale = math.sqrt(max_upper_area /
                                  (height * width))  # Scale without any padding

        # We want to choose the largest possible scale such that the final padded area does not exceed max_upper_area
        # Use binary search-like iteration to find this scale
        find_it = False
        for i in range(100):
            scale = max_scale - (max_scale - min_scale) * i / 100
            new_height, new_width = int(height * scale), int(width * scale)

            # Pad to make dimensions divisible by 64
            pad_height = (64 - new_height % 64) % 64
            pad_width = (64 - new_width % 64) % 64
            pad_top = pad_height // 2
            pad_bottom = pad_height - pad_top
            pad_left = pad_width // 2
            pad_right = pad_width - pad_left

            padded_height, padded_width = new_height + pad_height, new_width + pad_width

            if padded_height * padded_width <= max_upper_area:
                find_it = True
                break

        if find_it:
            return padded_height, padded_width
        else:
            # Fallback: calculate target dimensions based on aspect ratio and divisor alignment
            aspect_ratio = width / height
            target_width = int(
                (target_area * aspect_ratio)**0.5 // divisor * divisor)
            target_height = int(
                (target_area / aspect_ratio)**0.5 // divisor * divisor)

            # Ensure the result is not larger than the original resolution
            if target_width >= width or target_height >= height:
                target_width = int(width // divisor * divisor)
                target_height = int(height // divisor * divisor)

            return target_height, target_width

    def prepare_default_cond_input(self,

                                   map_shape=[3, 12, 64, 64],

                                   motion_frames=5,

                                   lat_motion_frames=2,

                                   enable_mano=False,

                                   enable_kp=False,

                                   enable_pose=False):
        default_value = [1.0, -1.0, -1.0]
        cond_enable = [enable_mano, enable_kp, enable_pose]
        cond = []
        for d, c in zip(default_value, cond_enable):
            if c:
                map_value = torch.ones(
                    map_shape, dtype=self.param_dtype, device=self.device) * d
                cond_lat = torch.cat([
                    map_value[:, :, 0:1].repeat(1, 1, motion_frames, 1, 1),
                    map_value
                ],
                                     dim=2)
                cond_lat = torch.stack(
                    self.vae.encode(cond_lat.to(
                        self.param_dtype)))[:, :, lat_motion_frames:].to(
                            self.param_dtype)

                cond.append(cond_lat)
        if len(cond) >= 1:
            cond = torch.cat(cond, dim=1)
        else:
            cond = None
        return cond

    def encode_audio(self, audio_path, infer_frames):
        z = self.audio_encoder.extract_audio_feat(
            audio_path, return_all_layers=True)
        audio_embed_bucket, num_repeat = self.audio_encoder.get_audio_embed_bucket_fps(
            z, fps=self.fps, batch_frames=infer_frames, m=self.audio_sample_m)
        audio_embed_bucket = audio_embed_bucket.to(self.device,
                                                   self.param_dtype)
        audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
        if len(audio_embed_bucket.shape) == 3:
            audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
        elif len(audio_embed_bucket.shape) == 4:
            audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)
        return audio_embed_bucket, num_repeat

    def read_last_n_frames(self,

                           video_path,

                           n_frames,

                           target_fps=16,

                           reverse=False):
        """

        Read the last `n_frames` from a video at the specified frame rate.



        Parameters:

            video_path (str): Path to the video file.

            n_frames (int): Number of frames to read.

            target_fps (int, optional): Target sampling frame rate. Defaults to 16.

            reverse (bool, optional): Whether to read frames in reverse order. 

                                    If True, reads the first `n_frames` instead of the last ones.



        Returns:

            np.ndarray: A NumPy array of shape [n_frames, H, W, 3], representing the sampled video frames.

        """
        vr = VideoReader(video_path)
        original_fps = vr.get_avg_fps()
        total_frames = len(vr)

        interval = max(1, round(original_fps / target_fps))

        required_span = (n_frames - 1) * interval

        start_frame = max(0, total_frames - required_span -
                          1) if not reverse else 0

        sampled_indices = []
        for i in range(n_frames):
            indice = start_frame + i * interval
            if indice >= total_frames:
                break
            else:
                sampled_indices.append(indice)

        return vr.get_batch(sampled_indices).asnumpy()

    def load_pose_cond(self, pose_video, num_repeat, infer_frames, size):
        HEIGHT, WIDTH = size
        if not pose_video is None:
            pose_seq = self.read_last_n_frames(
                pose_video,
                n_frames=infer_frames * num_repeat,
                target_fps=self.fps,
                reverse=True)

            resize_opreat = transforms.Resize(min(HEIGHT, WIDTH))
            crop_opreat = transforms.CenterCrop((HEIGHT, WIDTH))
            tensor_trans = transforms.ToTensor()

            cond_tensor = torch.from_numpy(pose_seq)
            cond_tensor = cond_tensor.permute(0, 3, 1, 2) / 255.0 * 2 - 1.0
            cond_tensor = crop_opreat(resize_opreat(cond_tensor)).permute(
                1, 0, 2, 3).unsqueeze(0)

            padding_frame_num = num_repeat * infer_frames - cond_tensor.shape[2]
            cond_tensor = torch.cat([
                cond_tensor,
                - torch.ones([1, 3, padding_frame_num, HEIGHT, WIDTH])
            ],
                                    dim=2)

            cond_tensors = torch.chunk(cond_tensor, num_repeat, dim=2)
        else:
            cond_tensors = [-torch.ones([1, 3, infer_frames, HEIGHT, WIDTH])]

        COND = []
        for r in range(len(cond_tensors)):
            cond = cond_tensors[r]
            cond = torch.cat([cond[:, :, 0:1].repeat(1, 1, 1, 1, 1), cond],
                             dim=2)
            cond_lat = torch.stack(
                self.vae.encode(
                    cond.to(dtype=self.param_dtype,
                            device=self.device)))[:, :,
                                                  1:].cpu()  # for mem save
            COND.append(cond_lat)
        return COND

    def get_gen_size(self, size, max_area, ref_image_path, pre_video_path):
        if not size is None:
            HEIGHT, WIDTH = size
        else:
            if pre_video_path:
                ref_image = self.read_last_n_frames(
                    pre_video_path, n_frames=1)[0]
            else:
                ref_image = np.array(Image.open(ref_image_path).convert('RGB'))
            HEIGHT, WIDTH = ref_image.shape[:2]
        HEIGHT, WIDTH = self.get_size_less_than_area(
            HEIGHT, WIDTH, target_area=max_area)
        return (HEIGHT, WIDTH)

    def generate(

        self,

        input_prompt,

        ref_image_path,

        audio_path,

        enable_tts,

        tts_prompt_audio,

        tts_prompt_text,

        tts_text,

        num_repeat=1,

        pose_video=None,

        max_area=720 * 1280,

        infer_frames=80,

        shift=5.0,

        sample_solver='unipc',

        sampling_steps=40,

        guide_scale=5.0,

        n_prompt="",

        seed=-1,

        offload_model=True,

        init_first_frame=False,

    ):
        r"""

        Generates video frames from input image and text prompt using diffusion process.



        Args:

            input_prompt (`str`):

                Text prompt for content generation.

            ref_image_path ('str'):

                Input image path

            audio_path ('str'):

                Audio for video driven

            num_repeat ('int'):

                Number of clips to generate; will be automatically adjusted based on the audio length

            pose_video ('str'):

                If provided, uses a sequence of poses to drive the generated video

            max_area (`int`, *optional*, defaults to 720*1280):

                Maximum pixel area for latent space calculation. Controls video resolution scaling

            infer_frames (`int`, *optional*, defaults to 80):

                How many frames to generate per clips. The number should be 4n

            shift (`float`, *optional*, defaults to 5.0):

                Noise schedule shift parameter. Affects temporal dynamics

                [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.

            sample_solver (`str`, *optional*, defaults to 'unipc'):

                Solver used to sample the video.

            sampling_steps (`int`, *optional*, defaults to 40):

                Number of diffusion sampling steps. Higher values improve quality but slow generation

            guide_scale (`float` or tuple[`float`], *optional*, defaults 5.0):

                Classifier-free guidance scale. Controls prompt adherence vs. creativity.

                If tuple, the first guide_scale will be used for low noise model and

                the second guide_scale will be used for high noise model.

            n_prompt (`str`, *optional*, defaults to ""):

                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`

            seed (`int`, *optional*, defaults to -1):

                Random seed for noise generation. If -1, use random seed

            offload_model (`bool`, *optional*, defaults to True):

                If True, offloads models to CPU during generation to save VRAM

            init_first_frame (`bool`, *optional*, defaults to False):

                Whether to use the reference image as the first frame (i.e., standard image-to-video generation)



        Returns:

            torch.Tensor:

                Generated video frames tensor. Dimensions: (C, N H, W) where:

                - C: Color channels (3 for RGB)

                - N: Number of frames (81)

                - H: Frame height (from max_area)

                - W: Frame width from max_area)

        """
        # preprocess
        size = self.get_gen_size(
            size=None,
            max_area=max_area,
            ref_image_path=ref_image_path,
            pre_video_path=None)
        HEIGHT, WIDTH = size
        channel = 3

        resize_opreat = transforms.Resize(min(HEIGHT, WIDTH))
        crop_opreat = transforms.CenterCrop((HEIGHT, WIDTH))
        tensor_trans = transforms.ToTensor()

        ref_image = None
        motion_latents = None

        if ref_image is None:
            ref_image = np.array(Image.open(ref_image_path).convert('RGB'))
        if motion_latents is None:
            motion_latents = torch.zeros(
                [1, channel, self.motion_frames, HEIGHT, WIDTH],
                dtype=self.param_dtype,
                device=self.device)

        # extract audio emb
        if enable_tts is True:
            audio_path = self.tts(tts_prompt_audio, tts_prompt_text, tts_text)
        audio_emb, nr = self.encode_audio(audio_path, infer_frames=infer_frames)
        if num_repeat is None or num_repeat > nr:
            num_repeat = nr

        lat_motion_frames = (self.motion_frames + 3) // 4
        model_pic = crop_opreat(resize_opreat(Image.fromarray(ref_image)))

        ref_pixel_values = tensor_trans(model_pic)
        ref_pixel_values = ref_pixel_values.unsqueeze(1).unsqueeze(
            0) * 2 - 1.0  # b c 1 h w
        ref_pixel_values = ref_pixel_values.to(
            dtype=self.vae.dtype, device=self.vae.device)
        ref_latents = torch.stack(self.vae.encode(ref_pixel_values))

        # encode the motion latents
        videos_last_frames = motion_latents.detach()
        drop_first_motion = self.drop_first_motion
        if init_first_frame:
            drop_first_motion = False
            motion_latents[:, :, -6:] = ref_pixel_values
        motion_latents = torch.stack(self.vae.encode(motion_latents))

        # get pose cond input if need
        COND = self.load_pose_cond(
            pose_video=pose_video,
            num_repeat=num_repeat,
            infer_frames=infer_frames,
            size=size)

        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)

        if n_prompt == "":
            n_prompt = self.sample_neg_prompt

        # preprocess
        if not self.t5_cpu:
            self.text_encoder.model.to(self.device)
            context = self.text_encoder([input_prompt], self.device)
            context_null = self.text_encoder([n_prompt], self.device)
            if offload_model:
                self.text_encoder.model.cpu()
        else:
            context = self.text_encoder([input_prompt], torch.device('cpu'))
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
            context = [t.to(self.device) for t in context]
            context_null = [t.to(self.device) for t in context_null]

        out = []
        # evaluation mode
        with (
                torch.amp.autocast('cuda', dtype=self.param_dtype),
                torch.no_grad(),
        ):
            for r in range(num_repeat):
                seed_g = torch.Generator(device=self.device)
                seed_g.manual_seed(seed + r)

                lat_target_frames = (infer_frames + 3 + self.motion_frames
                                    ) // 4 - lat_motion_frames
                target_shape = [lat_target_frames, HEIGHT // 8, WIDTH // 8]
                noise = [
                    torch.randn(
                        16,
                        target_shape[0],
                        target_shape[1],
                        target_shape[2],
                        dtype=self.param_dtype,
                        device=self.device,
                        generator=seed_g)
                ]
                max_seq_len = np.prod(target_shape) // 4

                if sample_solver == 'unipc':
                    sample_scheduler = FlowUniPCMultistepScheduler(
                        num_train_timesteps=self.num_train_timesteps,
                        shift=1,
                        use_dynamic_shifting=False)
                    sample_scheduler.set_timesteps(
                        sampling_steps, device=self.device, shift=shift)
                    timesteps = sample_scheduler.timesteps
                elif sample_solver == 'dpm++':
                    sample_scheduler = FlowDPMSolverMultistepScheduler(
                        num_train_timesteps=self.num_train_timesteps,
                        shift=1,
                        use_dynamic_shifting=False)
                    sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
                    timesteps, _ = retrieve_timesteps(
                        sample_scheduler,
                        device=self.device,
                        sigmas=sampling_sigmas)
                else:
                    raise NotImplementedError("Unsupported solver.")

                latents = deepcopy(noise)
                with torch.no_grad():
                    left_idx = r * infer_frames
                    right_idx = r * infer_frames + infer_frames
                    cond_latents = COND[r] if pose_video else COND[0] * 0
                    cond_latents = cond_latents.to(
                        dtype=self.param_dtype, device=self.device)
                    audio_input = audio_emb[..., left_idx:right_idx]
                input_motion_latents = motion_latents.clone()

                arg_c = {
                    'context': context[0:1],
                    'seq_len': max_seq_len,
                    'cond_states': cond_latents,
                    "motion_latents": input_motion_latents,
                    'ref_latents': ref_latents,
                    "audio_input": audio_input,
                    "motion_frames": [self.motion_frames, lat_motion_frames],
                    "drop_motion_frames": drop_first_motion and r == 0,
                }
                if guide_scale > 1:
                    arg_null = {
                        'context': context_null[0:1],
                        'seq_len': max_seq_len,
                        'cond_states': cond_latents,
                        "motion_latents": input_motion_latents,
                        'ref_latents': ref_latents,
                        "audio_input": 0.0 * audio_input,
                        "motion_frames": [
                            self.motion_frames, lat_motion_frames
                        ],
                        "drop_motion_frames": drop_first_motion and r == 0,
                    }
                if offload_model or self.init_on_cpu:
                    self.noise_model.to(self.device)
                    torch.cuda.empty_cache()

                for i, t in enumerate(tqdm(timesteps)):
                    latent_model_input = latents[0:1]
                    timestep = [t]

                    timestep = torch.stack(timestep).to(self.device)

                    noise_pred_cond = self.noise_model(
                        latent_model_input, t=timestep, **arg_c)

                    if guide_scale > 1:
                        noise_pred_uncond = self.noise_model(
                            latent_model_input, t=timestep, **arg_null)
                        noise_pred = [
                            u + guide_scale * (c - u)
                            for c, u in zip(noise_pred_cond, noise_pred_uncond)
                        ]
                    else:
                        noise_pred = noise_pred_cond

                    temp_x0 = sample_scheduler.step(
                        noise_pred[0].unsqueeze(0),
                        t,
                        latents[0].unsqueeze(0),
                        return_dict=False,
                        generator=seed_g)[0]
                    latents[0] = temp_x0.squeeze(0)

                if offload_model:
                    self.noise_model.cpu()
                    torch.cuda.synchronize()
                    torch.cuda.empty_cache()
                latents = torch.stack(latents)
                if not (drop_first_motion and r == 0):
                    decode_latents = torch.cat([motion_latents, latents], dim=2)
                else:
                    decode_latents = torch.cat([ref_latents, latents], dim=2)
                image = torch.stack(self.vae.decode(decode_latents))
                image = image[:, :, -(infer_frames):]
                if (drop_first_motion and r == 0):
                    image = image[:, :, 3:]

                overlap_frames_num = min(self.motion_frames, image.shape[2])
                videos_last_frames = torch.cat([
                    videos_last_frames[:, :, overlap_frames_num:],
                    image[:, :, -overlap_frames_num:]
                ],
                                               dim=2)
                videos_last_frames = videos_last_frames.to(
                    dtype=motion_latents.dtype, device=motion_latents.device)
                motion_latents = torch.stack(
                    self.vae.encode(videos_last_frames))
                out.append(image.cpu())

        videos = torch.cat(out, dim=2)
        del noise, latents
        del sample_scheduler
        if offload_model:
            gc.collect()
            torch.cuda.synchronize()
        if dist.is_initialized():
            dist.barrier()

        return videos[0] if self.rank == 0 else None

    def tts(self, tts_prompt_audio, tts_prompt_text, tts_text):
        if not hasattr(self, 'cosyvoice'):
            self.load_tts()
        speech_list = []
        from cosyvoice.utils.file_utils import load_wav
        import torchaudio
        prompt_speech_16k = load_wav(tts_prompt_audio, 16000)
        if tts_prompt_text is not None:
            for i in self.cosyvoice.inference_zero_shot(tts_text, tts_prompt_text, prompt_speech_16k):
                speech_list.append(i['tts_speech'])
        else:
            for i in self.cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k):
                speech_list.append(i['tts_speech'])
        torchaudio.save('tts.wav', torch.concat(speech_list, dim=1), self.cosyvoice.sample_rate)
        return 'tts.wav'

    def load_tts(self):
        if not os.path.exists('CosyVoice'):
            from wan.utils.utils import download_cosyvoice_repo
            download_cosyvoice_repo('CosyVoice')
        if not os.path.exists('CosyVoice2-0.5B'):
            from wan.utils.utils import download_cosyvoice_model
            download_cosyvoice_model('CosyVoice2-0.5B', 'CosyVoice2-0.5B')
        sys.path.append('CosyVoice')
        sys.path.append('CosyVoice/third_party/Matcha-TTS')
        from cosyvoice.cli.cosyvoice import CosyVoice2
        self.cosyvoice = CosyVoice2('CosyVoice2-0.5B')