alexnasa's picture
progress bar for longer generations
eab81ad verified
raw
history blame
28.7 kB
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import logging
import math
import os
import cv2
import types
from copy import deepcopy
from functools import partial
from einops import rearrange
import numpy as np
import torch
import torch.distributed as dist
from peft import set_peft_model_state_dict
from decord import VideoReader
from tqdm import tqdm
import torch.nn.functional as F
from .distributed.fsdp import shard_model
from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward
from .distributed.util import get_world_size
from .modules.animate import WanAnimateModel
from .modules.animate import CLIPModel
from .modules.t5 import T5EncoderModel
from .modules.vae2_1 import Wan2_1_VAE
from .modules.animate.animate_utils import TensorList, get_loraconfig
from .utils.fm_solvers import (
FlowDPMSolverMultistepScheduler,
get_sampling_sigmas,
retrieve_timesteps,
)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
class WanAnimate:
def __init__(
self,
config,
checkpoint_dir,
device_id=0,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=True,
convert_model_dtype=False,
use_relighting_lora=False
):
r"""
Initializes the generation model components.
Args:
config (EasyDict):
Object containing model parameters initialized from config.py
checkpoint_dir (`str`):
Path to directory containing model checkpoints
device_id (`int`, *optional*, defaults to 0):
Id of target GPU device
rank (`int`, *optional*, defaults to 0):
Process rank for distributed training
t5_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for T5 model
dit_fsdp (`bool`, *optional*, defaults to False):
Enable FSDP sharding for DiT model
use_sp (`bool`, *optional*, defaults to False):
Enable distribution strategy of sequence parallel.
t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp.
init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
convert_model_dtype (`bool`, *optional*, defaults to False):
Convert DiT model parameters dtype to 'config.param_dtype'.
Only works without FSDP.
use_relighting_lora (`bool`, *optional*, defaults to False):
Whether to use relighting lora for character replacement.
"""
self.device = torch.device(f"cuda:{device_id}")
self.config = config
self.rank = rank
self.t5_cpu = t5_cpu
self.init_on_cpu = init_on_cpu
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
if t5_fsdp or dit_fsdp or use_sp:
self.init_on_cpu = False
shard_fn = partial(shard_model, device_id=device_id)
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None,
)
self.clip = CLIPModel(
dtype=torch.float16,
device=self.device,
checkpoint_path=os.path.join(checkpoint_dir,
config.clip_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
self.vae = Wan2_1_VAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
logging.info(f"Creating WanAnimate from {checkpoint_dir}")
if not dit_fsdp:
self.noise_model = WanAnimateModel.from_pretrained(
checkpoint_dir,
torch_dtype=self.param_dtype,
device_map=self.device)
else:
self.noise_model = WanAnimateModel.from_pretrained(
checkpoint_dir, torch_dtype=self.param_dtype)
self.noise_model = self._configure_model(
model=self.noise_model,
use_sp=use_sp,
dit_fsdp=dit_fsdp,
shard_fn=shard_fn,
convert_model_dtype=convert_model_dtype,
use_lora=use_relighting_lora,
checkpoint_dir=checkpoint_dir,
config=config
)
# self.noise_model = torch.compile(self.noise_model)
if use_sp:
self.sp_size = get_world_size()
else:
self.sp_size = 1
self.sample_neg_prompt = config.sample_neg_prompt
self.sample_prompt = config.prompt
def _configure_model(self, model, use_sp, dit_fsdp, shard_fn,
convert_model_dtype, use_lora, checkpoint_dir, config):
"""
Configures a model object. This includes setting evaluation modes,
applying distributed parallel strategy, and handling device placement.
Args:
model (torch.nn.Module):
The model instance to configure.
use_sp (`bool`):
Enable distribution strategy of sequence parallel.
dit_fsdp (`bool`):
Enable FSDP sharding for DiT model.
shard_fn (callable):
The function to apply FSDP sharding.
convert_model_dtype (`bool`):
Convert DiT model parameters dtype to 'config.param_dtype'.
Only works without FSDP.
Returns:
torch.nn.Module:
The configured model.
"""
model.eval().requires_grad_(False)
if use_sp:
for block in model.blocks:
block.self_attn.forward = types.MethodType(
sp_attn_forward, block.self_attn)
model.use_context_parallel = True
if dist.is_initialized():
dist.barrier()
if use_lora:
logging.info("Loading Relighting Lora. ")
lora_config = get_loraconfig(
transformer=model,
rank=128,
alpha=128
)
model.add_adapter(lora_config)
lora_path = os.path.join(checkpoint_dir, config.lora_checkpoint)
peft_state_dict = torch.load(lora_path)["state_dict"]
set_peft_model_state_dict(model, peft_state_dict)
if dit_fsdp:
model = shard_fn(model, use_lora=use_lora)
else:
if convert_model_dtype:
model.to(self.param_dtype)
if not self.init_on_cpu:
model.to(self.device)
return model
def inputs_padding(self, array, target_len):
idx = 0
flip = False
target_array = []
while len(target_array) < target_len:
target_array.append(deepcopy(array[idx]))
if flip:
idx -= 1
else:
idx += 1
if idx == 0 or idx == len(array) - 1:
flip = not flip
return target_array[:target_len]
def get_valid_len(self, real_len, clip_len=81, overlap=1):
real_clip_len = clip_len - overlap
last_clip_num = (real_len - overlap) % real_clip_len
if last_clip_num == 0:
extra = 0
else:
extra = real_clip_len - last_clip_num
target_len = real_len + extra
return target_len
def get_i2v_mask(self, lat_t, lat_h, lat_w, mask_len=1, mask_pixel_values=None, device="cuda"):
if mask_pixel_values is None:
msk = torch.zeros(1, (lat_t-1) * 4 + 1, lat_h, lat_w, device=device)
else:
msk = mask_pixel_values.clone()
msk[:, :mask_len] = 1
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
msk = msk.transpose(1, 2)[0]
return msk
def padding_resize(self, img_ori, height=512, width=512, padding_color=(0, 0, 0), interpolation=cv2.INTER_LINEAR):
ori_height = img_ori.shape[0]
ori_width = img_ori.shape[1]
channel = img_ori.shape[2]
img_pad = np.zeros((height, width, channel))
if channel == 1:
img_pad[:, :, 0] = padding_color[0]
else:
img_pad[:, :, 0] = padding_color[0]
img_pad[:, :, 1] = padding_color[1]
img_pad[:, :, 2] = padding_color[2]
if (ori_height / ori_width) > (height / width):
new_width = int(height / ori_height * ori_width)
img = cv2.resize(img_ori, (new_width, height), interpolation=interpolation)
padding = int((width - new_width) / 2)
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
img_pad[:, padding: padding + new_width, :] = img
else:
new_height = int(width / ori_width * ori_height)
img = cv2.resize(img_ori, (width, new_height), interpolation=interpolation)
padding = int((height - new_height) / 2)
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
img_pad[padding: padding + new_height, :, :] = img
img_pad = np.uint8(img_pad)
return img_pad
def prepare_source(self, src_pose_path, src_face_path, src_ref_path):
pose_video_reader = VideoReader(src_pose_path)
pose_len = len(pose_video_reader)
pose_idxs = list(range(pose_len))
cond_images = pose_video_reader.get_batch(pose_idxs).asnumpy()
face_video_reader = VideoReader(src_face_path)
face_len = len(face_video_reader)
face_idxs = list(range(face_len))
face_images = face_video_reader.get_batch(face_idxs).asnumpy()
height, width = cond_images[0].shape[:2]
refer_images = cv2.imread(src_ref_path)[..., ::-1]
refer_images = self.padding_resize(refer_images, height=height, width=width)
return cond_images, face_images, refer_images
def prepare_source_for_replace(self, src_bg_path, src_mask_path):
bg_video_reader = VideoReader(src_bg_path)
bg_len = len(bg_video_reader)
bg_idxs = list(range(bg_len))
bg_images = bg_video_reader.get_batch(bg_idxs).asnumpy()
mask_video_reader = VideoReader(src_mask_path)
mask_len = len(mask_video_reader)
mask_idxs = list(range(mask_len))
mask_images = mask_video_reader.get_batch(mask_idxs).asnumpy()
mask_images = mask_images[:, :, :, 0] / 255
return bg_images, mask_images
def generate(
self,
src_root_path,
replace_flag=False,
clip_len=77,
refert_num=1,
shift=5.0,
sample_solver='dpm++',
sampling_steps=20,
guide_scale=1,
input_prompt="",
n_prompt="",
seed=-1,
offload_model=True,
):
r"""
Generates video frames from input image using diffusion process.
Args:
src_root_path ('str'):
Process output path
replace_flag (`bool`, *optional*, defaults to False):
Whether to use character replace.
clip_len (`int`, *optional*, defaults to 77):
How many frames to generate per clips. The number should be 4n+1
refert_num (`int`, *optional*, defaults to 1):
How many frames used for temporal guidance. Recommended to be 1 or 5.
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter.
sample_solver (`str`, *optional*, defaults to 'dpm++'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 20):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float` or tuple[`float`], *optional*, defaults 1.0):
Classifier-free guidance scale. We only use it for expression control.
In most cases, it's not necessary and faster generation can be achieved without it.
When expression adjustments are needed, you may consider using this feature.
input_prompt (`str`):
Text prompt for content generation. We don't recommend custom prompts (although they work)
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N, H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames
- H: Frame height
- W: Frame width
"""
assert refert_num == 1 or refert_num == 5, "refert_num should be 1 or 5."
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
if n_prompt == "":
n_prompt = self.sample_neg_prompt
if input_prompt == "":
input_prompt = self.sample_prompt
src_pose_path = os.path.join(src_root_path, "src_pose.mp4")
src_face_path = os.path.join(src_root_path, "src_face.mp4")
src_ref_path = os.path.join(src_root_path, "src_ref.png")
cond_images, face_images, refer_images = self.prepare_source(src_pose_path=src_pose_path, src_face_path=src_face_path, src_ref_path=src_ref_path)
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
real_frame_len = len(cond_images)
target_len = self.get_valid_len(real_frame_len, clip_len, overlap=refert_num)
logging.info('real frames: {} target frames: {}'.format(real_frame_len, target_len))
cond_images = self.inputs_padding(cond_images, target_len)
face_images = self.inputs_padding(face_images, target_len)
if replace_flag:
src_bg_path = os.path.join(src_root_path, "src_bg.mp4")
src_mask_path = os.path.join(src_root_path, "src_mask.mp4")
bg_images, mask_images = self.prepare_source_for_replace(src_bg_path, src_mask_path)
bg_images = self.inputs_padding(bg_images, target_len)
mask_images = self.inputs_padding(mask_images, target_len)
self.noise_model.enable_adapters()
else:
self.noise_model.disable_adapters()
height, width = refer_images.shape[:2]
start = 0
end = clip_len
all_out_frames = []
total_iterations = ((len(cond_images) - 1) // clip_len + 1) * sampling_steps
with tqdm(total=total_iterations) as pbar:
while True:
if start + refert_num >= len(cond_images):
break
if start == 0:
mask_reft_len = 0
else:
mask_reft_len = refert_num
batch = {
"conditioning_pixel_values": torch.zeros(1, 3, clip_len, height, width),
"bg_pixel_values": torch.zeros(1, 3, clip_len, height, width),
"mask_pixel_values": torch.zeros(1, 1, clip_len, height, width),
"face_pixel_values": torch.zeros(1, 3, clip_len, 512, 512),
"refer_pixel_values": torch.zeros(1, 3, height, width),
"refer_t_pixel_values": torch.zeros(refert_num, 3, height, width)
}
batch["conditioning_pixel_values"] = rearrange(
torch.tensor(np.stack(cond_images[start:end]) / 127.5 - 1),
"t h w c -> 1 c t h w",
)
batch["face_pixel_values"] = rearrange(
torch.tensor(np.stack(face_images[start:end]) / 127.5 - 1),
"t h w c -> 1 c t h w",
)
batch["refer_pixel_values"] = rearrange(
torch.tensor(refer_images / 127.5 - 1), "h w c -> 1 c h w"
)
if start > 0:
batch["refer_t_pixel_values"] = rearrange(
out_frames[0, :, -refert_num:].clone().detach(),
"c t h w -> t c h w",
)
batch["refer_t_pixel_values"] = rearrange(batch["refer_t_pixel_values"],
"t c h w -> 1 c t h w",
)
if replace_flag:
batch["bg_pixel_values"] = rearrange(
torch.tensor(np.stack(bg_images[start:end]) / 127.5 - 1),
"t h w c -> 1 c t h w",
)
batch["mask_pixel_values"] = rearrange(
torch.tensor(np.stack(mask_images[start:end])[:, :, :, None]),
"t h w c -> 1 t c h w",
)
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.to(device=self.device, dtype=torch.bfloat16)
ref_pixel_values = batch["refer_pixel_values"]
refer_t_pixel_values = batch["refer_t_pixel_values"]
conditioning_pixel_values = batch["conditioning_pixel_values"]
face_pixel_values = batch["face_pixel_values"]
B, _, H, W = ref_pixel_values.shape
T = clip_len
lat_h = H // 8
lat_w = W // 8
lat_t = T // 4 + 1
target_shape = [lat_t + 1, lat_h, lat_w]
noise = [
torch.randn(
16,
target_shape[0],
target_shape[1],
target_shape[2],
dtype=torch.float32,
device=self.device,
generator=seed_g,
)
]
max_seq_len = int(math.ceil(np.prod(target_shape) // 4 / self.sp_size)) * self.sp_size
if max_seq_len % self.sp_size != 0:
raise ValueError(f"max_seq_len {max_seq_len} is not divisible by sp_size {self.sp_size}")
with (
torch.autocast(device_type=str(self.device), dtype=torch.bfloat16, enabled=True),
torch.no_grad()
):
if sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
latents = noise
pose_latents_no_ref = self.vae.encode(conditioning_pixel_values.to(torch.bfloat16))
pose_latents_no_ref = torch.stack(pose_latents_no_ref)
pose_latents = torch.cat([pose_latents_no_ref], dim=2)
ref_pixel_values = rearrange(ref_pixel_values, "t c h w -> 1 c t h w")
ref_latents = self.vae.encode(ref_pixel_values.to(torch.bfloat16))
ref_latents = torch.stack(ref_latents)
mask_ref = self.get_i2v_mask(1, lat_h, lat_w, 1, device=self.device)
y_ref = torch.concat([mask_ref, ref_latents[0]]).to(dtype=torch.bfloat16, device=self.device)
img = ref_pixel_values[0, :, 0]
clip_context = self.clip.visual([img[:, None, :, :]]).to(dtype=torch.bfloat16, device=self.device)
if mask_reft_len > 0:
if replace_flag:
bg_pixel_values = batch["bg_pixel_values"]
y_reft = self.vae.encode(
[
torch.concat([refer_t_pixel_values[0, :, :mask_reft_len], bg_pixel_values[0, :, mask_reft_len:]], dim=1).to(self.device)
]
)[0]
mask_pixel_values = 1 - batch["mask_pixel_values"]
mask_pixel_values = rearrange(mask_pixel_values, "b t c h w -> (b t) c h w")
mask_pixel_values = F.interpolate(mask_pixel_values, size=(H//8, W//8), mode='nearest')
mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0]
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, mask_pixel_values=mask_pixel_values, device=self.device)
else:
y_reft = self.vae.encode(
[
torch.concat(
[
torch.nn.functional.interpolate(refer_t_pixel_values[0, :, :mask_reft_len].cpu(),
size=(H, W), mode="bicubic"),
torch.zeros(3, T - mask_reft_len, H, W),
],
dim=1,
).to(self.device)
]
)[0]
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, device=self.device)
else:
if replace_flag:
bg_pixel_values = batch["bg_pixel_values"]
mask_pixel_values = 1 - batch["mask_pixel_values"]
mask_pixel_values = rearrange(mask_pixel_values, "b t c h w -> (b t) c h w")
mask_pixel_values = F.interpolate(mask_pixel_values, size=(H//8, W//8), mode='nearest')
mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0]
y_reft = self.vae.encode(
[
torch.concat(
[
bg_pixel_values[0],
],
dim=1,
).to(self.device)
]
)[0]
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, mask_pixel_values=mask_pixel_values, device=self.device)
else:
y_reft = self.vae.encode(
[
torch.concat(
[
torch.zeros(3, T - mask_reft_len, H, W),
],
dim=1,
).to(self.device)
]
)[0]
msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, device=self.device)
y_reft = torch.concat([msk_reft, y_reft]).to(dtype=torch.bfloat16, device=self.device)
y = torch.concat([y_ref, y_reft], dim=1)
arg_c = {
"context": context,
"seq_len": max_seq_len,
"clip_fea": clip_context.to(dtype=torch.bfloat16, device=self.device),
"y": [y],
"pose_latents": pose_latents,
"face_pixel_values": face_pixel_values,
}
if guide_scale > 1:
face_pixel_values_uncond = face_pixel_values * 0 - 1
arg_null = {
"context": context_null,
"seq_len": max_seq_len,
"clip_fea": clip_context.to(dtype=torch.bfloat16, device=self.device),
"y": [y],
"pose_latents": pose_latents,
"face_pixel_values": face_pixel_values_uncond,
}
for i, t in enumerate(timesteps):
latent_model_input = latents
timestep = [t]
timestep = torch.stack(timestep)
noise_pred_cond = TensorList(
self.noise_model(TensorList(latent_model_input), t=timestep, **arg_c)
)
if guide_scale > 1:
noise_pred_uncond = TensorList(
self.noise_model(
TensorList(latent_model_input), t=timestep, **arg_null
)
)
noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond
)
else:
noise_pred = noise_pred_cond
temp_x0 = sample_scheduler.step(
noise_pred[0].unsqueeze(0),
t,
latents[0].unsqueeze(0),
return_dict=False,
generator=seed_g,
)[0]
latents[0] = temp_x0.squeeze(0)
x0 = latents
if pbar is not None:
pbar.update(1)
x0 = [x.to(dtype=torch.float32) for x in x0]
out_frames = torch.stack(self.vae.decode([x0[0][:, 1:]]))
if start != 0:
out_frames = out_frames[:, :, refert_num:]
all_out_frames.append(out_frames.cpu())
start += clip_len - refert_num
end += clip_len - refert_num
videos = torch.cat(all_out_frames, dim=2)[:, :, :real_frame_len]
return videos[0] if self.rank == 0 else None