Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import logging | |
| import math | |
| import os | |
| import cv2 | |
| import types | |
| from copy import deepcopy | |
| from functools import partial | |
| from einops import rearrange | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| from peft import set_peft_model_state_dict | |
| from decord import VideoReader | |
| from tqdm import tqdm | |
| import torch.nn.functional as F | |
| from .distributed.fsdp import shard_model | |
| from .distributed.sequence_parallel import sp_attn_forward, sp_dit_forward | |
| from .distributed.util import get_world_size | |
| from .modules.animate import WanAnimateModel | |
| from .modules.animate import CLIPModel | |
| from .modules.t5 import T5EncoderModel | |
| from .modules.vae2_1 import Wan2_1_VAE | |
| from .modules.animate.animate_utils import TensorList, get_loraconfig | |
| from .utils.fm_solvers import ( | |
| FlowDPMSolverMultistepScheduler, | |
| get_sampling_sigmas, | |
| retrieve_timesteps, | |
| ) | |
| from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
| class WanAnimate: | |
| def __init__( | |
| self, | |
| config, | |
| checkpoint_dir, | |
| device_id=0, | |
| rank=0, | |
| t5_fsdp=False, | |
| dit_fsdp=False, | |
| use_sp=False, | |
| t5_cpu=False, | |
| init_on_cpu=True, | |
| convert_model_dtype=False, | |
| use_relighting_lora=False | |
| ): | |
| r""" | |
| Initializes the generation model components. | |
| Args: | |
| config (EasyDict): | |
| Object containing model parameters initialized from config.py | |
| checkpoint_dir (`str`): | |
| Path to directory containing model checkpoints | |
| device_id (`int`, *optional*, defaults to 0): | |
| Id of target GPU device | |
| rank (`int`, *optional*, defaults to 0): | |
| Process rank for distributed training | |
| t5_fsdp (`bool`, *optional*, defaults to False): | |
| Enable FSDP sharding for T5 model | |
| dit_fsdp (`bool`, *optional*, defaults to False): | |
| Enable FSDP sharding for DiT model | |
| use_sp (`bool`, *optional*, defaults to False): | |
| Enable distribution strategy of sequence parallel. | |
| t5_cpu (`bool`, *optional*, defaults to False): | |
| Whether to place T5 model on CPU. Only works without t5_fsdp. | |
| init_on_cpu (`bool`, *optional*, defaults to True): | |
| Enable initializing Transformer Model on CPU. Only works without FSDP or USP. | |
| convert_model_dtype (`bool`, *optional*, defaults to False): | |
| Convert DiT model parameters dtype to 'config.param_dtype'. | |
| Only works without FSDP. | |
| use_relighting_lora (`bool`, *optional*, defaults to False): | |
| Whether to use relighting lora for character replacement. | |
| """ | |
| self.device = torch.device(f"cuda:{device_id}") | |
| self.config = config | |
| self.rank = rank | |
| self.t5_cpu = t5_cpu | |
| self.init_on_cpu = init_on_cpu | |
| self.num_train_timesteps = config.num_train_timesteps | |
| self.param_dtype = config.param_dtype | |
| if t5_fsdp or dit_fsdp or use_sp: | |
| self.init_on_cpu = False | |
| shard_fn = partial(shard_model, device_id=device_id) | |
| self.text_encoder = T5EncoderModel( | |
| text_len=config.text_len, | |
| dtype=config.t5_dtype, | |
| device=torch.device('cpu'), | |
| checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), | |
| tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
| shard_fn=shard_fn if t5_fsdp else None, | |
| ) | |
| self.clip = CLIPModel( | |
| dtype=torch.float16, | |
| device=self.device, | |
| checkpoint_path=os.path.join(checkpoint_dir, | |
| config.clip_checkpoint), | |
| tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer)) | |
| self.vae = Wan2_1_VAE( | |
| vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), | |
| device=self.device) | |
| logging.info(f"Creating WanAnimate from {checkpoint_dir}") | |
| if not dit_fsdp: | |
| self.noise_model = WanAnimateModel.from_pretrained( | |
| checkpoint_dir, | |
| torch_dtype=self.param_dtype, | |
| device_map=self.device) | |
| else: | |
| self.noise_model = WanAnimateModel.from_pretrained( | |
| checkpoint_dir, torch_dtype=self.param_dtype) | |
| self.noise_model = self._configure_model( | |
| model=self.noise_model, | |
| use_sp=use_sp, | |
| dit_fsdp=dit_fsdp, | |
| shard_fn=shard_fn, | |
| convert_model_dtype=convert_model_dtype, | |
| use_lora=use_relighting_lora, | |
| checkpoint_dir=checkpoint_dir, | |
| config=config | |
| ) | |
| # self.noise_model = torch.compile(self.noise_model) | |
| if use_sp: | |
| self.sp_size = get_world_size() | |
| else: | |
| self.sp_size = 1 | |
| self.sample_neg_prompt = config.sample_neg_prompt | |
| self.sample_prompt = config.prompt | |
| def _configure_model(self, model, use_sp, dit_fsdp, shard_fn, | |
| convert_model_dtype, use_lora, checkpoint_dir, config): | |
| """ | |
| Configures a model object. This includes setting evaluation modes, | |
| applying distributed parallel strategy, and handling device placement. | |
| Args: | |
| model (torch.nn.Module): | |
| The model instance to configure. | |
| use_sp (`bool`): | |
| Enable distribution strategy of sequence parallel. | |
| dit_fsdp (`bool`): | |
| Enable FSDP sharding for DiT model. | |
| shard_fn (callable): | |
| The function to apply FSDP sharding. | |
| convert_model_dtype (`bool`): | |
| Convert DiT model parameters dtype to 'config.param_dtype'. | |
| Only works without FSDP. | |
| Returns: | |
| torch.nn.Module: | |
| The configured model. | |
| """ | |
| model.eval().requires_grad_(False) | |
| if use_sp: | |
| for block in model.blocks: | |
| block.self_attn.forward = types.MethodType( | |
| sp_attn_forward, block.self_attn) | |
| model.use_context_parallel = True | |
| if dist.is_initialized(): | |
| dist.barrier() | |
| if use_lora: | |
| logging.info("Loading Relighting Lora. ") | |
| lora_config = get_loraconfig( | |
| transformer=model, | |
| rank=128, | |
| alpha=128 | |
| ) | |
| model.add_adapter(lora_config) | |
| lora_path = os.path.join(checkpoint_dir, config.lora_checkpoint) | |
| peft_state_dict = torch.load(lora_path)["state_dict"] | |
| set_peft_model_state_dict(model, peft_state_dict) | |
| if dit_fsdp: | |
| model = shard_fn(model, use_lora=use_lora) | |
| else: | |
| if convert_model_dtype: | |
| model.to(self.param_dtype) | |
| if not self.init_on_cpu: | |
| model.to(self.device) | |
| return model | |
| def inputs_padding(self, array, target_len): | |
| idx = 0 | |
| flip = False | |
| target_array = [] | |
| while len(target_array) < target_len: | |
| target_array.append(deepcopy(array[idx])) | |
| if flip: | |
| idx -= 1 | |
| else: | |
| idx += 1 | |
| if idx == 0 or idx == len(array) - 1: | |
| flip = not flip | |
| return target_array[:target_len] | |
| def get_valid_len(self, real_len, clip_len=81, overlap=1): | |
| real_clip_len = clip_len - overlap | |
| last_clip_num = (real_len - overlap) % real_clip_len | |
| if last_clip_num == 0: | |
| extra = 0 | |
| else: | |
| extra = real_clip_len - last_clip_num | |
| target_len = real_len + extra | |
| return target_len | |
| def get_i2v_mask(self, lat_t, lat_h, lat_w, mask_len=1, mask_pixel_values=None, device="cuda"): | |
| if mask_pixel_values is None: | |
| msk = torch.zeros(1, (lat_t-1) * 4 + 1, lat_h, lat_w, device=device) | |
| else: | |
| msk = mask_pixel_values.clone() | |
| msk[:, :mask_len] = 1 | |
| msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
| msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
| msk = msk.transpose(1, 2)[0] | |
| return msk | |
| def padding_resize(self, img_ori, height=512, width=512, padding_color=(0, 0, 0), interpolation=cv2.INTER_LINEAR): | |
| ori_height = img_ori.shape[0] | |
| ori_width = img_ori.shape[1] | |
| channel = img_ori.shape[2] | |
| img_pad = np.zeros((height, width, channel)) | |
| if channel == 1: | |
| img_pad[:, :, 0] = padding_color[0] | |
| else: | |
| img_pad[:, :, 0] = padding_color[0] | |
| img_pad[:, :, 1] = padding_color[1] | |
| img_pad[:, :, 2] = padding_color[2] | |
| if (ori_height / ori_width) > (height / width): | |
| new_width = int(height / ori_height * ori_width) | |
| img = cv2.resize(img_ori, (new_width, height), interpolation=interpolation) | |
| padding = int((width - new_width) / 2) | |
| if len(img.shape) == 2: | |
| img = img[:, :, np.newaxis] | |
| img_pad[:, padding: padding + new_width, :] = img | |
| else: | |
| new_height = int(width / ori_width * ori_height) | |
| img = cv2.resize(img_ori, (width, new_height), interpolation=interpolation) | |
| padding = int((height - new_height) / 2) | |
| if len(img.shape) == 2: | |
| img = img[:, :, np.newaxis] | |
| img_pad[padding: padding + new_height, :, :] = img | |
| img_pad = np.uint8(img_pad) | |
| return img_pad | |
| def prepare_source(self, src_pose_path, src_face_path, src_ref_path): | |
| pose_video_reader = VideoReader(src_pose_path) | |
| pose_len = len(pose_video_reader) | |
| pose_idxs = list(range(pose_len)) | |
| cond_images = pose_video_reader.get_batch(pose_idxs).asnumpy() | |
| face_video_reader = VideoReader(src_face_path) | |
| face_len = len(face_video_reader) | |
| face_idxs = list(range(face_len)) | |
| face_images = face_video_reader.get_batch(face_idxs).asnumpy() | |
| height, width = cond_images[0].shape[:2] | |
| refer_images = cv2.imread(src_ref_path)[..., ::-1] | |
| refer_images = self.padding_resize(refer_images, height=height, width=width) | |
| return cond_images, face_images, refer_images | |
| def prepare_source_for_replace(self, src_bg_path, src_mask_path): | |
| bg_video_reader = VideoReader(src_bg_path) | |
| bg_len = len(bg_video_reader) | |
| bg_idxs = list(range(bg_len)) | |
| bg_images = bg_video_reader.get_batch(bg_idxs).asnumpy() | |
| mask_video_reader = VideoReader(src_mask_path) | |
| mask_len = len(mask_video_reader) | |
| mask_idxs = list(range(mask_len)) | |
| mask_images = mask_video_reader.get_batch(mask_idxs).asnumpy() | |
| mask_images = mask_images[:, :, :, 0] / 255 | |
| return bg_images, mask_images | |
| def generate( | |
| self, | |
| src_root_path, | |
| replace_flag=False, | |
| clip_len=77, | |
| refert_num=1, | |
| shift=5.0, | |
| sample_solver='dpm++', | |
| sampling_steps=20, | |
| guide_scale=1, | |
| input_prompt="", | |
| n_prompt="", | |
| seed=-1, | |
| offload_model=True, | |
| ): | |
| r""" | |
| Generates video frames from input image using diffusion process. | |
| Args: | |
| src_root_path ('str'): | |
| Process output path | |
| replace_flag (`bool`, *optional*, defaults to False): | |
| Whether to use character replace. | |
| clip_len (`int`, *optional*, defaults to 77): | |
| How many frames to generate per clips. The number should be 4n+1 | |
| refert_num (`int`, *optional*, defaults to 1): | |
| How many frames used for temporal guidance. Recommended to be 1 or 5. | |
| shift (`float`, *optional*, defaults to 5.0): | |
| Noise schedule shift parameter. | |
| sample_solver (`str`, *optional*, defaults to 'dpm++'): | |
| Solver used to sample the video. | |
| sampling_steps (`int`, *optional*, defaults to 20): | |
| Number of diffusion sampling steps. Higher values improve quality but slow generation | |
| guide_scale (`float` or tuple[`float`], *optional*, defaults 1.0): | |
| Classifier-free guidance scale. We only use it for expression control. | |
| In most cases, it's not necessary and faster generation can be achieved without it. | |
| When expression adjustments are needed, you may consider using this feature. | |
| input_prompt (`str`): | |
| Text prompt for content generation. We don't recommend custom prompts (although they work) | |
| n_prompt (`str`, *optional*, defaults to ""): | |
| Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
| seed (`int`, *optional*, defaults to -1): | |
| Random seed for noise generation. If -1, use random seed | |
| offload_model (`bool`, *optional*, defaults to True): | |
| If True, offloads models to CPU during generation to save VRAM | |
| Returns: | |
| torch.Tensor: | |
| Generated video frames tensor. Dimensions: (C, N, H, W) where: | |
| - C: Color channels (3 for RGB) | |
| - N: Number of frames | |
| - H: Frame height | |
| - W: Frame width | |
| """ | |
| assert refert_num == 1 or refert_num == 5, "refert_num should be 1 or 5." | |
| seed_g = torch.Generator(device=self.device) | |
| seed_g.manual_seed(seed) | |
| if n_prompt == "": | |
| n_prompt = self.sample_neg_prompt | |
| if input_prompt == "": | |
| input_prompt = self.sample_prompt | |
| src_pose_path = os.path.join(src_root_path, "src_pose.mp4") | |
| src_face_path = os.path.join(src_root_path, "src_face.mp4") | |
| src_ref_path = os.path.join(src_root_path, "src_ref.png") | |
| cond_images, face_images, refer_images = self.prepare_source(src_pose_path=src_pose_path, src_face_path=src_face_path, src_ref_path=src_ref_path) | |
| if not self.t5_cpu: | |
| self.text_encoder.model.to(self.device) | |
| context = self.text_encoder([input_prompt], self.device) | |
| context_null = self.text_encoder([n_prompt], self.device) | |
| if offload_model: | |
| self.text_encoder.model.cpu() | |
| else: | |
| context = self.text_encoder([input_prompt], torch.device('cpu')) | |
| context_null = self.text_encoder([n_prompt], torch.device('cpu')) | |
| context = [t.to(self.device) for t in context] | |
| context_null = [t.to(self.device) for t in context_null] | |
| real_frame_len = len(cond_images) | |
| target_len = self.get_valid_len(real_frame_len, clip_len, overlap=refert_num) | |
| logging.info('real frames: {} target frames: {}'.format(real_frame_len, target_len)) | |
| cond_images = self.inputs_padding(cond_images, target_len) | |
| face_images = self.inputs_padding(face_images, target_len) | |
| if replace_flag: | |
| src_bg_path = os.path.join(src_root_path, "src_bg.mp4") | |
| src_mask_path = os.path.join(src_root_path, "src_mask.mp4") | |
| bg_images, mask_images = self.prepare_source_for_replace(src_bg_path, src_mask_path) | |
| bg_images = self.inputs_padding(bg_images, target_len) | |
| mask_images = self.inputs_padding(mask_images, target_len) | |
| self.noise_model.enable_adapters() | |
| else: | |
| self.noise_model.disable_adapters() | |
| height, width = refer_images.shape[:2] | |
| start = 0 | |
| end = clip_len | |
| all_out_frames = [] | |
| total_iterations = ((len(cond_images) - 1) // clip_len + 1) * sampling_steps | |
| with tqdm(total=total_iterations) as pbar: | |
| while True: | |
| if start + refert_num >= len(cond_images): | |
| break | |
| if start == 0: | |
| mask_reft_len = 0 | |
| else: | |
| mask_reft_len = refert_num | |
| batch = { | |
| "conditioning_pixel_values": torch.zeros(1, 3, clip_len, height, width), | |
| "bg_pixel_values": torch.zeros(1, 3, clip_len, height, width), | |
| "mask_pixel_values": torch.zeros(1, 1, clip_len, height, width), | |
| "face_pixel_values": torch.zeros(1, 3, clip_len, 512, 512), | |
| "refer_pixel_values": torch.zeros(1, 3, height, width), | |
| "refer_t_pixel_values": torch.zeros(refert_num, 3, height, width) | |
| } | |
| batch["conditioning_pixel_values"] = rearrange( | |
| torch.tensor(np.stack(cond_images[start:end]) / 127.5 - 1), | |
| "t h w c -> 1 c t h w", | |
| ) | |
| batch["face_pixel_values"] = rearrange( | |
| torch.tensor(np.stack(face_images[start:end]) / 127.5 - 1), | |
| "t h w c -> 1 c t h w", | |
| ) | |
| batch["refer_pixel_values"] = rearrange( | |
| torch.tensor(refer_images / 127.5 - 1), "h w c -> 1 c h w" | |
| ) | |
| if start > 0: | |
| batch["refer_t_pixel_values"] = rearrange( | |
| out_frames[0, :, -refert_num:].clone().detach(), | |
| "c t h w -> t c h w", | |
| ) | |
| batch["refer_t_pixel_values"] = rearrange(batch["refer_t_pixel_values"], | |
| "t c h w -> 1 c t h w", | |
| ) | |
| if replace_flag: | |
| batch["bg_pixel_values"] = rearrange( | |
| torch.tensor(np.stack(bg_images[start:end]) / 127.5 - 1), | |
| "t h w c -> 1 c t h w", | |
| ) | |
| batch["mask_pixel_values"] = rearrange( | |
| torch.tensor(np.stack(mask_images[start:end])[:, :, :, None]), | |
| "t h w c -> 1 t c h w", | |
| ) | |
| for key, value in batch.items(): | |
| if isinstance(value, torch.Tensor): | |
| batch[key] = value.to(device=self.device, dtype=torch.bfloat16) | |
| ref_pixel_values = batch["refer_pixel_values"] | |
| refer_t_pixel_values = batch["refer_t_pixel_values"] | |
| conditioning_pixel_values = batch["conditioning_pixel_values"] | |
| face_pixel_values = batch["face_pixel_values"] | |
| B, _, H, W = ref_pixel_values.shape | |
| T = clip_len | |
| lat_h = H // 8 | |
| lat_w = W // 8 | |
| lat_t = T // 4 + 1 | |
| target_shape = [lat_t + 1, lat_h, lat_w] | |
| noise = [ | |
| torch.randn( | |
| 16, | |
| target_shape[0], | |
| target_shape[1], | |
| target_shape[2], | |
| dtype=torch.float32, | |
| device=self.device, | |
| generator=seed_g, | |
| ) | |
| ] | |
| max_seq_len = int(math.ceil(np.prod(target_shape) // 4 / self.sp_size)) * self.sp_size | |
| if max_seq_len % self.sp_size != 0: | |
| raise ValueError(f"max_seq_len {max_seq_len} is not divisible by sp_size {self.sp_size}") | |
| with ( | |
| torch.autocast(device_type=str(self.device), dtype=torch.bfloat16, enabled=True), | |
| torch.no_grad() | |
| ): | |
| if sample_solver == 'unipc': | |
| sample_scheduler = FlowUniPCMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sample_scheduler.set_timesteps( | |
| sampling_steps, device=self.device, shift=shift) | |
| timesteps = sample_scheduler.timesteps | |
| elif sample_solver == 'dpm++': | |
| sample_scheduler = FlowDPMSolverMultistepScheduler( | |
| num_train_timesteps=self.num_train_timesteps, | |
| shift=1, | |
| use_dynamic_shifting=False) | |
| sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
| timesteps, _ = retrieve_timesteps( | |
| sample_scheduler, | |
| device=self.device, | |
| sigmas=sampling_sigmas) | |
| else: | |
| raise NotImplementedError("Unsupported solver.") | |
| latents = noise | |
| pose_latents_no_ref = self.vae.encode(conditioning_pixel_values.to(torch.bfloat16)) | |
| pose_latents_no_ref = torch.stack(pose_latents_no_ref) | |
| pose_latents = torch.cat([pose_latents_no_ref], dim=2) | |
| ref_pixel_values = rearrange(ref_pixel_values, "t c h w -> 1 c t h w") | |
| ref_latents = self.vae.encode(ref_pixel_values.to(torch.bfloat16)) | |
| ref_latents = torch.stack(ref_latents) | |
| mask_ref = self.get_i2v_mask(1, lat_h, lat_w, 1, device=self.device) | |
| y_ref = torch.concat([mask_ref, ref_latents[0]]).to(dtype=torch.bfloat16, device=self.device) | |
| img = ref_pixel_values[0, :, 0] | |
| clip_context = self.clip.visual([img[:, None, :, :]]).to(dtype=torch.bfloat16, device=self.device) | |
| if mask_reft_len > 0: | |
| if replace_flag: | |
| bg_pixel_values = batch["bg_pixel_values"] | |
| y_reft = self.vae.encode( | |
| [ | |
| torch.concat([refer_t_pixel_values[0, :, :mask_reft_len], bg_pixel_values[0, :, mask_reft_len:]], dim=1).to(self.device) | |
| ] | |
| )[0] | |
| mask_pixel_values = 1 - batch["mask_pixel_values"] | |
| mask_pixel_values = rearrange(mask_pixel_values, "b t c h w -> (b t) c h w") | |
| mask_pixel_values = F.interpolate(mask_pixel_values, size=(H//8, W//8), mode='nearest') | |
| mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0] | |
| msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, mask_pixel_values=mask_pixel_values, device=self.device) | |
| else: | |
| y_reft = self.vae.encode( | |
| [ | |
| torch.concat( | |
| [ | |
| torch.nn.functional.interpolate(refer_t_pixel_values[0, :, :mask_reft_len].cpu(), | |
| size=(H, W), mode="bicubic"), | |
| torch.zeros(3, T - mask_reft_len, H, W), | |
| ], | |
| dim=1, | |
| ).to(self.device) | |
| ] | |
| )[0] | |
| msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, device=self.device) | |
| else: | |
| if replace_flag: | |
| bg_pixel_values = batch["bg_pixel_values"] | |
| mask_pixel_values = 1 - batch["mask_pixel_values"] | |
| mask_pixel_values = rearrange(mask_pixel_values, "b t c h w -> (b t) c h w") | |
| mask_pixel_values = F.interpolate(mask_pixel_values, size=(H//8, W//8), mode='nearest') | |
| mask_pixel_values = rearrange(mask_pixel_values, "(b t) c h w -> b t c h w", b=1)[:,:,0] | |
| y_reft = self.vae.encode( | |
| [ | |
| torch.concat( | |
| [ | |
| bg_pixel_values[0], | |
| ], | |
| dim=1, | |
| ).to(self.device) | |
| ] | |
| )[0] | |
| msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, mask_pixel_values=mask_pixel_values, device=self.device) | |
| else: | |
| y_reft = self.vae.encode( | |
| [ | |
| torch.concat( | |
| [ | |
| torch.zeros(3, T - mask_reft_len, H, W), | |
| ], | |
| dim=1, | |
| ).to(self.device) | |
| ] | |
| )[0] | |
| msk_reft = self.get_i2v_mask(lat_t, lat_h, lat_w, mask_reft_len, device=self.device) | |
| y_reft = torch.concat([msk_reft, y_reft]).to(dtype=torch.bfloat16, device=self.device) | |
| y = torch.concat([y_ref, y_reft], dim=1) | |
| arg_c = { | |
| "context": context, | |
| "seq_len": max_seq_len, | |
| "clip_fea": clip_context.to(dtype=torch.bfloat16, device=self.device), | |
| "y": [y], | |
| "pose_latents": pose_latents, | |
| "face_pixel_values": face_pixel_values, | |
| } | |
| if guide_scale > 1: | |
| face_pixel_values_uncond = face_pixel_values * 0 - 1 | |
| arg_null = { | |
| "context": context_null, | |
| "seq_len": max_seq_len, | |
| "clip_fea": clip_context.to(dtype=torch.bfloat16, device=self.device), | |
| "y": [y], | |
| "pose_latents": pose_latents, | |
| "face_pixel_values": face_pixel_values_uncond, | |
| } | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = latents | |
| timestep = [t] | |
| timestep = torch.stack(timestep) | |
| noise_pred_cond = TensorList( | |
| self.noise_model(TensorList(latent_model_input), t=timestep, **arg_c) | |
| ) | |
| if guide_scale > 1: | |
| noise_pred_uncond = TensorList( | |
| self.noise_model( | |
| TensorList(latent_model_input), t=timestep, **arg_null | |
| ) | |
| ) | |
| noise_pred = noise_pred_uncond + guide_scale * ( | |
| noise_pred_cond - noise_pred_uncond | |
| ) | |
| else: | |
| noise_pred = noise_pred_cond | |
| temp_x0 = sample_scheduler.step( | |
| noise_pred[0].unsqueeze(0), | |
| t, | |
| latents[0].unsqueeze(0), | |
| return_dict=False, | |
| generator=seed_g, | |
| )[0] | |
| latents[0] = temp_x0.squeeze(0) | |
| x0 = latents | |
| if pbar is not None: | |
| pbar.update(1) | |
| x0 = [x.to(dtype=torch.float32) for x in x0] | |
| out_frames = torch.stack(self.vae.decode([x0[0][:, 1:]])) | |
| if start != 0: | |
| out_frames = out_frames[:, :, refert_num:] | |
| all_out_frames.append(out_frames.cpu()) | |
| start += clip_len - refert_num | |
| end += clip_len - refert_num | |
| videos = torch.cat(all_out_frames, dim=2)[:, :, :real_frame_len] | |
| return videos[0] if self.rank == 0 else None | |