Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5a66b61
1
Parent(s):
bb79d4a
add initial values
Browse files- LORA_SDX1.5_Midjourney +1 -0
- app.py +10 -7
- requirements.txt +5 -1
LORA_SDX1.5_Midjourney
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 63323113c63d268a2e2cb18323b93db639d6e44e
|
app.py
CHANGED
|
@@ -7,7 +7,11 @@ from diffusers import DiffusionPipeline
|
|
| 7 |
import torch
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
torch_dtype = torch.float16
|
|
@@ -18,13 +22,13 @@ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
|
| 18 |
pipe = pipe.to(device)
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE =
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
-
|
| 25 |
def infer(
|
| 26 |
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
seed,
|
| 29 |
randomize_seed,
|
| 30 |
width,
|
|
@@ -40,7 +44,6 @@ def infer(
|
|
| 40 |
|
| 41 |
image = pipe(
|
| 42 |
prompt=prompt,
|
| 43 |
-
negative_prompt=negative_prompt,
|
| 44 |
guidance_scale=guidance_scale,
|
| 45 |
num_inference_steps=num_inference_steps,
|
| 46 |
width=width,
|
|
@@ -105,7 +108,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 105 |
minimum=256,
|
| 106 |
maximum=MAX_IMAGE_SIZE,
|
| 107 |
step=32,
|
| 108 |
-
value=
|
| 109 |
)
|
| 110 |
|
| 111 |
height = gr.Slider(
|
|
@@ -113,7 +116,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 113 |
minimum=256,
|
| 114 |
maximum=MAX_IMAGE_SIZE,
|
| 115 |
step=32,
|
| 116 |
-
value=
|
| 117 |
)
|
| 118 |
|
| 119 |
with gr.Row():
|
|
|
|
| 7 |
import torch
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
pre="runwayml/stable-diffusion-v1-5"
|
| 11 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 12 |
+
pre,
|
| 13 |
+
torch_dtype=torch.float16
|
| 14 |
+
).to(device)
|
| 15 |
|
| 16 |
if torch.cuda.is_available():
|
| 17 |
torch_dtype = torch.float16
|
|
|
|
| 22 |
pipe = pipe.to(device)
|
| 23 |
|
| 24 |
MAX_SEED = np.iinfo(np.int32).max
|
| 25 |
+
MAX_IMAGE_SIZE = 512
|
| 26 |
+
pipe.load_lora_weights("/home/user/app/LORA_SDX1.5_Midjourney/lora/pytorch_lora_weights.safetensors")
|
| 27 |
|
| 28 |
|
| 29 |
+
@spaces.GPU #[uncomment to use ZeroGPU]
|
| 30 |
def infer(
|
| 31 |
prompt,
|
|
|
|
| 32 |
seed,
|
| 33 |
randomize_seed,
|
| 34 |
width,
|
|
|
|
| 44 |
|
| 45 |
image = pipe(
|
| 46 |
prompt=prompt,
|
|
|
|
| 47 |
guidance_scale=guidance_scale,
|
| 48 |
num_inference_steps=num_inference_steps,
|
| 49 |
width=width,
|
|
|
|
| 108 |
minimum=256,
|
| 109 |
maximum=MAX_IMAGE_SIZE,
|
| 110 |
step=32,
|
| 111 |
+
value=512, # Replace with defaults that work for your model
|
| 112 |
)
|
| 113 |
|
| 114 |
height = gr.Slider(
|
|
|
|
| 116 |
minimum=256,
|
| 117 |
maximum=MAX_IMAGE_SIZE,
|
| 118 |
step=32,
|
| 119 |
+
value=512, # Replace with defaults that work for your model
|
| 120 |
)
|
| 121 |
|
| 122 |
with gr.Row():
|
requirements.txt
CHANGED
|
@@ -3,4 +3,8 @@ diffusers
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
-
xformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
+
xformers
|
| 7 |
+
accelerate
|
| 8 |
+
peft
|
| 9 |
+
safetensors
|
| 10 |
+
bitsandbytes
|