Spaces:
No application file
No application file
| import gradio as gr | |
| import cv2 | |
| import requests | |
| import os | |
| from ultralytics import YOLO | |
| file_urls = [ | |
| "https://www.dropbox.com/scl/fi/2mlc191y9lzbe8nwu45ss/duck76.jpeg?rlkey=qwnr78mtdy7sjg71ldrui6vf0&dl=0", | |
| "https://www.dropbox.com/scl/fi/2y4cdkwwn3drlh4ob86ic/duck85.jpeg?rlkey=lcl3n0jav7ougsj4tamm1hh93&dl=0", | |
| "https://www.dropbox.com/scl/fi/8gojxnm8wwhs2isj6k4zv/duck23.jpeg?rlkey=2zioinhr0wfpv22qq963tnv8a&dl=0", | |
| ] | |
| def download_file(url, save_name): | |
| if not os.path.exists(save_name): | |
| file = requests.get(url) | |
| open(save_name, "wb").write(file.content) | |
| for i, url in enumerate(file_urls): | |
| if "mp4" in url: | |
| download_file(url, "video.mp4") | |
| else: | |
| download_file(url, f"image_{i}.jpg") | |
| model = YOLO("best.pt") | |
| def show_preds_image(image): | |
| outputs = model.predict(source=image) | |
| image_np = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
| results = outputs.xyxy[0].cpu().numpy() | |
| for det in results: | |
| cv2.rectangle( | |
| image_np, | |
| (int(det[0]), int(det[1])), | |
| (int(det[2]), int(det[3])), | |
| color=(0, 0, 255), | |
| thickness=2, | |
| lineType=cv2.LINE_AA, | |
| ) | |
| return cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) | |
| inputs_image = gr.inputs.Image(type="file", label="Input Image") | |
| outputs_image = gr.outputs.Image(type="numpy", label="Output Image") | |
| interface_image = gr.Interface( | |
| fn=show_preds_image, | |
| inputs=inputs_image, | |
| outputs=outputs_image, | |
| title="Duck Image Segmentation", | |
| examples=file_urls, | |
| allow_flagging=False, | |
| ) | |
| interface_image.launch() |