File size: 7,073 Bytes
25fcb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import json
import re
from tqdm import tqdm
import os
import config

# --- Functions from dataOrganize.py ---

def clean_text(text: str) -> str:
    """
    Cleans the input text by removing common noise from FDA documents.
    """
    if not text:
        return ""
    text = re.sub(r'REVISED:\s*\d{1,2}/\d{4}', '', text)
    text = re.sub(r'\s{2,}', ' ', text).strip()
    text = re.sub(r'[\-=*]{3,}', '', text)
    return text

def organize_drug_data(input_path):
    """
    Loads raw drug data, filters for high-quality entries, cleans the text,
    and returns the organized data as a list.
    """
    print(f"Loading raw data from: {input_path}...")
    try:
        with open(input_path, 'r', encoding='utf-8') as f:
            data = json.load(f)
    except FileNotFoundError:
        print(f"Error: The file '{input_path}' was not found.")
        return []
    except json.JSONDecodeError:
        print(f"Error: Could not decode JSON from '{input_path}'.")
        return []

    entries = data.get('results', data) if isinstance(data, dict) else data

    if not isinstance(entries, list):
        print("Error: The JSON data is not in the expected list format.")
        return []

    organized_data = []
    print("Filtering, cleaning, and organizing drug data...")

    for entry in tqdm(entries, desc="Processing drug entries"):
        if not isinstance(entry, dict):
            continue

        openfda = entry.get("openfda", {})
        brand_name_list = openfda.get("brand_name")
        generic_name_list = openfda.get("generic_name")

        if not brand_name_list and not generic_name_list:
            continue

        if "indications_and_usage" not in entry:
            continue

        brand_name = brand_name_list[0] if brand_name_list else "Unknown Brand"
        generic_name = generic_name_list[0] if generic_name_list else "Unknown Generic"

        sections_to_extract = {
            "indications_and_usage": "Indications and Usage", "adverse_reactions": "Adverse Reactions",
            "drug_interactions": "Drug Interactions", "contraindications": "Contraindications",
            "warnings": "Warnings", "boxed_warning": "Boxed Warning",
            "mechanism_of_action": "Mechanism of Action", "pharmacokinetics": "Pharmacokinetics",
            "dosage_and_administration": "Dosage and Administration", "how_supplied": "How Supplied",
            "storage_and_handling": "Storage and Handling", "information_for_patients": "Information for Patients",
            "pregnancy": "Pregnancy", "nursing_mothers": "Nursing Mothers",
            "pediatric_use": "Pediatric Use", "geriatric_use": "Geriatric Use"
        }

        processed_sections = {}
        for key, section_name in sections_to_extract.items():
            text_list = entry.get(key)
            if text_list and isinstance(text_list, list) and text_list[0]:
                cleaned_text = clean_text(text_list[0])
                if cleaned_text:
                    processed_sections[section_name] = cleaned_text
        
        if processed_sections:
            organized_entry = {
                "brand_name": brand_name,
                "generic_name": generic_name,
                "sections": processed_sections
            }
            organized_data.append(organized_entry)

    print(f"Found {len(organized_data)} high-quality drug entries.")
    return organized_data

# --- Functions from deduplicate_drugs.py ---

def deduplicate_drugs(data):
    """
    Deduplicates a list of drugs based on brand_name and generic_name.
    """
    print(f"Deduplicating {len(data)} drugs...")
    seen_drugs = set()
    deduplicated_drugs = []

    for drug in data:
        brand_name = drug.get('brand_name')
        generic_name = drug.get('generic_name')

        if isinstance(brand_name, list):
            brand_name = brand_name[0] if brand_name else None
        if isinstance(generic_name, list):
            generic_name = generic_name[0] if generic_name else None

        brand_name_lower = brand_name.lower() if brand_name else None
        generic_name_lower = generic_name.lower() if generic_name else None

        drug_identifier = (brand_name_lower, generic_name_lower)

        if drug_identifier not in seen_drugs:
            seen_drugs.add(drug_identifier)
            deduplicated_drugs.append(drug)

    print(f"Deduplication complete. Found {len(deduplicated_drugs)} unique drugs.")
    return deduplicated_drugs

# --- Functions from format_fda_data.py ---

def generate_section_id(section_title):
    """Generates a simplified, lowercase, underscore-separated ID from a section title."""
    s = re.sub(r'[/\-&]', ' ', section_title)
    s = re.sub(r'[^a-zA-Z0-9\s]', '', s)
    parts = s.lower().split()
    if len(parts) >= 2:
        return '_'.join(parts[:2])
    elif len(parts) == 1:
        return parts[0]
    else:
        return "section"

def transform_drug_data(drugs, output_file_path):
    """
    Transforms drug data to a JSON Lines format.
    """
    print(f"Transforming {len(drugs)} drugs to JSONL format...")
    processed_records = []

    for drug in drugs:
        generic_name = drug.get('generic_name')
        sections = drug.get('sections')

        if not generic_name or not isinstance(sections, dict):
            continue

        if isinstance(generic_name, list):
            generic_name = generic_name[0] if generic_name else None
        
        if not generic_name:
            continue

        generic_name_upper = generic_name.upper()

        for section_title, section_content in sections.items():
            if not section_title or not section_content:
                continue

            section_id = generate_section_id(section_title)
            doc_id = f"{generic_name_upper.replace(' ', '_')}_{section_id}"

            record = {
                "doc_id": doc_id,
                "generic_name": generic_name_upper,
                "section": section_title,
                "content": section_content.strip()
            }
            processed_records.append(json.dumps(record))

    os.makedirs(os.path.dirname(output_file_path), exist_ok=True)
    with open(output_file_path, 'w') as f_out:
        f_out.write('\n'.join(processed_records))

    print(f"Transformation complete. {len(processed_records)} records created.")
    print(f"Transformed data saved to: {output_file_path}")


if __name__ == '__main__':
    # Define file paths using config
    raw_data_path = config.RAW_DATA_PATH
    cleaned_data_path = config.CLEANED_DATA_PATH

    # --- Run the full pipeline ---
    print("--- Starting Data Preparation Pipeline ---")
    
    # Step 1: Organize and clean the raw data in memory
    organized_data = organize_drug_data(raw_data_path)
    
    # Step 2: Deduplicate the cleaned data in memory
    deduplicated_data = deduplicate_drugs(organized_data)
    
    # Step 3: Transform the deduplicated data and write to the final file
    transform_drug_data(deduplicated_data, cleaned_data_path)
    
    print("--- Data Preparation Pipeline Finished ---")