Spaces:
Build error
Build error
| import gradio as gr | |
| import tensorflow as tf | |
| import cv2 | |
| import mtcnn | |
| import numpy as np | |
| model = tf.keras.models.load_model('./model') | |
| def load_and_preprocess_image(im_path, detector, maxWidth = 512): | |
| desiredLeftEye = (0.36, 0.43) | |
| # Load the image and convert it to grayscale | |
| try: | |
| image = cv2.imread(im_path) | |
| except: | |
| return 0 | |
| if image is None: | |
| return 0 | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Detect the face in the image | |
| result = detector.detect_faces(image) | |
| # Get the bounding box for the face | |
| x, y, w, h = result[0]['box'] | |
| desiredFaceWidth = 224 | |
| desiredFaceHeight = 224 | |
| # Get the landmarks for the face | |
| landmarks = result[0]['keypoints'] | |
| # Calculate the angle between the eyes | |
| eye_1 = landmarks['left_eye'] | |
| eye_2 = landmarks['right_eye'] | |
| dy = eye_2[1] - eye_1[1] | |
| dx = eye_2[0] - eye_1[0] | |
| angle = np.arctan2(dy, dx) * 180 / np.pi | |
| desiredRightEyeX = 1.0 - desiredLeftEye[0] | |
| dist = np.sqrt((dx ** 2) + (dy ** 2)) | |
| desiredDist = (desiredRightEyeX - desiredLeftEye[0]) * desiredFaceWidth | |
| scale = desiredDist / dist | |
| eyesCenter = ((eye_1[0] + eye_2[0]) // 2, (eye_1[1] + eye_2[1]) // 2) | |
| # grab the rotation matrix for rotating and scaling the face | |
| M = cv2.getRotationMatrix2D(eyesCenter, angle, scale) | |
| # update the translation component of the matrix | |
| tX = desiredFaceWidth * 0.5 | |
| tY = desiredFaceHeight * desiredLeftEye[1] | |
| M[0, 2] += (tX - eyesCenter[0]) | |
| M[1, 2] += (tY - eyesCenter[1]) | |
| (w, h) = (desiredFaceWidth, desiredFaceHeight) | |
| output = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC) | |
| output = np.array(output) | |
| output = tf.image.convert_image_dtype(output, dtype=tf.float32) | |
| output = tf.image.rgb_to_grayscale(output) | |
| output = tf.tile(output, [1, 1, 3]) | |
| output = tf.clip_by_value(output, 0, 1) | |
| return output | |
| def predict_remaining_life(img_path): | |
| detector = mtcnn.MTCNN() | |
| # Transform the target image and add a batch dimension | |
| img = load_and_preprocess_image(img_path, detector) | |
| img = np.expand_dims(img, axis = 0) | |
| #print(img.shape) | |
| #plt.imshow(img) | |
| # Put model into evaluation mode and turn on inference mode | |
| pred = model.predict(img) | |
| pred = round(pred[0][0]*100,1) | |
| # Return the prediction dictionary and prediction time | |
| return pred | |
| # Create title, description and article strings | |
| title = "Remaining Life Predictor" | |
| description = "A Convolutional Neural Net to predict how many years a person has left to live using their facial image" | |
| article = "Methodology and data explained at [arxiv article](https://arxiv.org/abs/2301.08229)" | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict_remaining_life, # mapping function from input to output | |
| inputs=gr.Image(type="filepath"), # what are the inputs? | |
| outputs=gr.Number(label="Remaining Life (Year)"), | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo! | |
| demo.launch(debug=False, # print errors locally? | |
| share=False) # generate a publically shareable URL? |