Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import os | |
| import time | |
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| import torch.nn as nn | |
| from collections import OrderedDict | |
| from models.svc.base import SVCInference | |
| from modules.encoder.condition_encoder import ConditionEncoder | |
| from models.svc.transformer.transformer import Transformer | |
| from models.svc.transformer.conformer import Conformer | |
| class TransformerInference(SVCInference): | |
| def __init__(self, args=None, cfg=None, infer_type="from_dataset"): | |
| SVCInference.__init__(self, args, cfg, infer_type) | |
| def _build_model(self): | |
| self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min | |
| self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max | |
| self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder) | |
| if self.cfg.model.transformer.type == "transformer": | |
| self.acoustic_mapper = Transformer(self.cfg.model.transformer) | |
| elif self.cfg.model.transformer.type == "conformer": | |
| self.acoustic_mapper = Conformer(self.cfg.model.transformer) | |
| else: | |
| raise NotImplementedError | |
| model = torch.nn.ModuleList([self.condition_encoder, self.acoustic_mapper]) | |
| return model | |
| def _inference_each_batch(self, batch_data): | |
| device = self.accelerator.device | |
| for k, v in batch_data.items(): | |
| batch_data[k] = v.to(device) | |
| condition = self.condition_encoder(batch_data) | |
| y_pred = self.acoustic_mapper(condition, batch_data["mask"]) | |
| return y_pred | |