Spaces:
Runtime error
Runtime error
| # Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. | |
| # Copyright 2023 The ModelScope Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Adapted from https://github.com/huggingface/diffusers/blob/v0.16.1/src/diffusers/models/unet_3d_condition.py | |
| # 1. 增加了from_pretrained,将模型从2D blocks改为3D blocks | |
| # 1. add from_pretrained, change model from 2D blocks to 3D blocks | |
| from copy import deepcopy | |
| from dataclasses import dataclass | |
| import inspect | |
| from pprint import pprint, pformat | |
| from typing import Any, Dict, List, Optional, Tuple, Union, Literal | |
| import os | |
| import logging | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from einops import rearrange, repeat | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import UNet2DConditionLoadersMixin | |
| from diffusers.utils import BaseOutput | |
| # from diffusers.utils import logging | |
| from diffusers.models.embeddings import ( | |
| TimestepEmbedding, | |
| Timesteps, | |
| ) | |
| from diffusers.models.modeling_utils import ModelMixin, load_state_dict | |
| from diffusers import __version__ | |
| from diffusers.utils import ( | |
| CONFIG_NAME, | |
| DIFFUSERS_CACHE, | |
| FLAX_WEIGHTS_NAME, | |
| HF_HUB_OFFLINE, | |
| SAFETENSORS_WEIGHTS_NAME, | |
| WEIGHTS_NAME, | |
| _add_variant, | |
| _get_model_file, | |
| is_accelerate_available, | |
| is_torch_version, | |
| ) | |
| from diffusers.utils.import_utils import _safetensors_available | |
| from diffusers.models.unet_3d_condition import ( | |
| UNet3DConditionOutput, | |
| UNet3DConditionModel as DiffusersUNet3DConditionModel, | |
| ) | |
| from diffusers.models.attention_processor import ( | |
| Attention, | |
| AttentionProcessor, | |
| AttnProcessor, | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| ) | |
| from ..models import Model_Register | |
| from .resnet import TemporalConvLayer | |
| from .temporal_transformer import ( | |
| TransformerTemporalModel, | |
| ) | |
| from .embeddings import get_2d_sincos_pos_embed, resize_spatial_position_emb | |
| from .unet_3d_blocks import ( | |
| CrossAttnDownBlock3D, | |
| CrossAttnUpBlock3D, | |
| DownBlock3D, | |
| UNetMidBlock3DCrossAttn, | |
| UpBlock3D, | |
| get_down_block, | |
| get_up_block, | |
| ) | |
| from ..data.data_util import ( | |
| adaptive_instance_normalization, | |
| align_repeat_tensor_single_dim, | |
| batch_adain_conditioned_tensor, | |
| batch_concat_two_tensor_with_index, | |
| concat_two_tensor, | |
| concat_two_tensor_with_index, | |
| ) | |
| from .attention_processor import BaseIPAttnProcessor | |
| from .attention_processor import ReferEmbFuseAttention | |
| from .transformer_2d import Transformer2DModel | |
| from .attention import BasicTransformerBlock | |
| logger = logging.getLogger(__name__) # pylint: disable=invalid-name | |
| # if is_torch_version(">=", "1.9.0"): | |
| # _LOW_CPU_MEM_USAGE_DEFAULT = True | |
| # else: | |
| # _LOW_CPU_MEM_USAGE_DEFAULT = False | |
| _LOW_CPU_MEM_USAGE_DEFAULT = False | |
| if is_accelerate_available(): | |
| import accelerate | |
| from accelerate.utils import set_module_tensor_to_device | |
| from accelerate.utils.versions import is_torch_version | |
| import safetensors | |
| def hack_t2i_sd_layer_attn_with_ip( | |
| unet: nn.Module, | |
| self_attn_class: BaseIPAttnProcessor = None, | |
| cross_attn_class: BaseIPAttnProcessor = None, | |
| ): | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| if "temp_attentions" in name or "transformer_in" in name: | |
| continue | |
| if name.endswith("attn1.processor") and self_attn_class is not None: | |
| attn_procs[name] = self_attn_class() | |
| if unet.print_idx == 0: | |
| logger.debug( | |
| f"hack attn_processor of {name} to {attn_procs[name].__class__.__name__}" | |
| ) | |
| elif name.endswith("attn2.processor") and cross_attn_class is not None: | |
| attn_procs[name] = cross_attn_class() | |
| if unet.print_idx == 0: | |
| logger.debug( | |
| f"hack attn_processor of {name} to {attn_procs[name].__class__.__name__}" | |
| ) | |
| unet.set_attn_processor(attn_procs, strict=False) | |
| def convert_2D_to_3D( | |
| module_names, | |
| valid_modules=( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnUpBlock2D", | |
| "DownBlock2D", | |
| "UNetMidBlock2DCrossAttn", | |
| "UpBlock2D", | |
| ), | |
| ): | |
| if not isinstance(module_names, list): | |
| return module_names.replace("2D", "3D") | |
| return_modules = [] | |
| for module_name in module_names: | |
| if module_name in valid_modules: | |
| return_modules.append(module_name.replace("2D", "3D")) | |
| else: | |
| return_modules.append(module_name) | |
| return return_modules | |
| def insert_spatial_self_attn_idx(unet): | |
| pass | |
| class UNet3DConditionOutput(BaseOutput): | |
| """ | |
| The output of [`UNet3DConditionModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): | |
| The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
| """ | |
| sample: torch.FloatTensor | |
| class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
| r""" | |
| UNet3DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep | |
| and returns sample shaped output. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
| implements for all the models (such as downloading or saving, etc.) | |
| Parameters: | |
| sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
| Height and width of input/output sample. | |
| in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. | |
| out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): | |
| The tuple of upsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
| downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
| If `None`, it will skip the normalization and activation layers in post-processing | |
| norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
| cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. | |
| attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| print_idx = 0 | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ), | |
| up_block_types: Tuple[str] = ( | |
| "UpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| "CrossAttnUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1024, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| temporal_conv_block: str = "TemporalConvLayer", | |
| temporal_transformer: str = "TransformerTemporalModel", | |
| need_spatial_position_emb: bool = False, | |
| need_transformer_in: bool = True, | |
| need_t2i_ip_adapter: bool = False, # self_attn, t2i.attn1 | |
| need_adain_temporal_cond: bool = False, | |
| t2i_ip_adapter_attn_processor: str = "NonParamT2ISelfReferenceXFormersAttnProcessor", | |
| keep_vision_condtion: bool = False, | |
| use_anivv1_cfg: bool = False, | |
| resnet_2d_skip_time_act: bool = False, | |
| need_zero_vis_cond_temb: bool = True, | |
| norm_spatial_length: bool = False, | |
| spatial_max_length: int = 2048, | |
| need_refer_emb: bool = False, | |
| ip_adapter_cross_attn: bool = False, # cross_attn, t2i.attn2 | |
| t2i_crossattn_ip_adapter_attn_processor: str = "T2IReferencenetIPAdapterXFormersAttnProcessor", | |
| need_t2i_facein: bool = False, | |
| need_t2i_ip_adapter_face: bool = False, | |
| need_vis_cond_mask: bool = False, | |
| ): | |
| """_summary_ | |
| Args: | |
| sample_size (Optional[int], optional): _description_. Defaults to None. | |
| in_channels (int, optional): _description_. Defaults to 4. | |
| out_channels (int, optional): _description_. Defaults to 4. | |
| down_block_types (Tuple[str], optional): _description_. Defaults to ( "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D", ). | |
| up_block_types (Tuple[str], optional): _description_. Defaults to ( "UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", ). | |
| block_out_channels (Tuple[int], optional): _description_. Defaults to (320, 640, 1280, 1280). | |
| layers_per_block (int, optional): _description_. Defaults to 2. | |
| downsample_padding (int, optional): _description_. Defaults to 1. | |
| mid_block_scale_factor (float, optional): _description_. Defaults to 1. | |
| act_fn (str, optional): _description_. Defaults to "silu". | |
| norm_num_groups (Optional[int], optional): _description_. Defaults to 32. | |
| norm_eps (float, optional): _description_. Defaults to 1e-5. | |
| cross_attention_dim (int, optional): _description_. Defaults to 1024. | |
| attention_head_dim (Union[int, Tuple[int]], optional): _description_. Defaults to 8. | |
| temporal_conv_block (str, optional): 3D卷积字符串,需要注册在 Model_Register. Defaults to "TemporalConvLayer". | |
| temporal_transformer (str, optional): 时序 Transformer block字符串,需要定义在 Model_Register. Defaults to "TransformerTemporalModel". | |
| need_spatial_position_emb (bool, optional): 是否需要 spatial hw 的emb,需要配合 thw attn使用. Defaults to False. | |
| need_transformer_in (bool, optional): 是否需要 第一个 temporal_transformer_block. Defaults to True. | |
| need_t2i_ip_adapter (bool, optional): T2I 模块是否需要面向视觉条件帧的 attn. Defaults to False. | |
| need_adain_temporal_cond (bool, optional): 是否需要面向首帧 使用Adain. Defaults to False. | |
| t2i_ip_adapter_attn_processor (str, optional): | |
| t2i attn_processor的优化版,需配合need_t2i_ip_adapter使用, | |
| 有 NonParam 表示无参ReferenceOnly-attn,没有表示有参 IpAdapter. | |
| Defaults to "NonParamT2ISelfReferenceXFormersAttnProcessor". | |
| keep_vision_condtion (bool, optional): 是否对视觉条件帧不加 timestep emb. Defaults to False. | |
| use_anivv1_cfg (bool, optional): 一些基本配置 是否延续AnivV设计. Defaults to False. | |
| resnet_2d_skip_time_act (bool, optional): 配合use_anivv1_cfg,修改 transformer 2d block. Defaults to False. | |
| need_zero_vis_cond_temb (bool, optional): 目前无效参数. Defaults to True. | |
| norm_spatial_length (bool, optional): 是否需要 norm_spatial_length,只有当 need_spatial_position_emb= True时,才有效. Defaults to False. | |
| spatial_max_length (int, optional): 归一化长度. Defaults to 2048. | |
| Raises: | |
| ValueError: _description_ | |
| ValueError: _description_ | |
| ValueError: _description_ | |
| """ | |
| super(UNet3DConditionModel, self).__init__() | |
| self.keep_vision_condtion = keep_vision_condtion | |
| self.use_anivv1_cfg = use_anivv1_cfg | |
| self.sample_size = sample_size | |
| self.resnet_2d_skip_time_act = resnet_2d_skip_time_act | |
| self.need_zero_vis_cond_temb = need_zero_vis_cond_temb | |
| self.norm_spatial_length = norm_spatial_length | |
| self.spatial_max_length = spatial_max_length | |
| self.need_refer_emb = need_refer_emb | |
| self.ip_adapter_cross_attn = ip_adapter_cross_attn | |
| self.need_t2i_facein = need_t2i_facein | |
| self.need_t2i_ip_adapter_face = need_t2i_ip_adapter_face | |
| logger.debug(f"need_t2i_ip_adapter_face={need_t2i_ip_adapter_face}") | |
| # Check inputs | |
| if len(down_block_types) != len(up_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
| ) | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len( | |
| down_block_types | |
| ): | |
| raise ValueError( | |
| f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| conv_in_kernel = 3 | |
| conv_out_kernel = 3 | |
| conv_in_padding = (conv_in_kernel - 1) // 2 | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[0], | |
| kernel_size=conv_in_kernel, | |
| padding=conv_in_padding, | |
| ) | |
| # time | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], True, 0) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding( | |
| timestep_input_dim, | |
| time_embed_dim, | |
| act_fn=act_fn, | |
| ) | |
| if use_anivv1_cfg: | |
| self.time_nonlinearity = nn.SiLU() | |
| # frame | |
| frame_embed_dim = block_out_channels[0] * 4 | |
| self.frame_proj = Timesteps(block_out_channels[0], True, 0) | |
| frame_input_dim = block_out_channels[0] | |
| if temporal_transformer is not None: | |
| self.frame_embedding = TimestepEmbedding( | |
| frame_input_dim, | |
| frame_embed_dim, | |
| act_fn=act_fn, | |
| ) | |
| else: | |
| self.frame_embedding = None | |
| if use_anivv1_cfg: | |
| self.femb_nonlinearity = nn.SiLU() | |
| # spatial_position_emb | |
| self.need_spatial_position_emb = need_spatial_position_emb | |
| if need_spatial_position_emb: | |
| self.spatial_position_input_dim = block_out_channels[0] * 2 | |
| self.spatial_position_embed_dim = block_out_channels[0] * 4 | |
| self.spatial_position_embedding = TimestepEmbedding( | |
| self.spatial_position_input_dim, | |
| self.spatial_position_embed_dim, | |
| act_fn=act_fn, | |
| ) | |
| # 从模型注册表中获取 模型类 | |
| temporal_conv_block = ( | |
| Model_Register[temporal_conv_block] | |
| if isinstance(temporal_conv_block, str) | |
| and temporal_conv_block.lower() != "none" | |
| else None | |
| ) | |
| self.need_transformer_in = need_transformer_in | |
| temporal_transformer = ( | |
| Model_Register[temporal_transformer] | |
| if isinstance(temporal_transformer, str) | |
| and temporal_transformer.lower() != "none" | |
| else None | |
| ) | |
| self.need_vis_cond_mask = need_vis_cond_mask | |
| if need_transformer_in and temporal_transformer is not None: | |
| self.transformer_in = temporal_transformer( | |
| num_attention_heads=attention_head_dim, | |
| attention_head_dim=block_out_channels[0] // attention_head_dim, | |
| in_channels=block_out_channels[0], | |
| num_layers=1, | |
| femb_channels=frame_embed_dim, | |
| need_spatial_position_emb=need_spatial_position_emb, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| # class embedding | |
| self.down_blocks = nn.ModuleList([]) | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| self.need_t2i_ip_adapter = need_t2i_ip_adapter | |
| # 确定T2I Attn 是否加入 ReferenceOnly机制或Ipadaper机制 | |
| # TODO:有待更好的实现机制, | |
| need_t2i_ip_adapter_param = ( | |
| t2i_ip_adapter_attn_processor is not None | |
| and "NonParam" not in t2i_ip_adapter_attn_processor | |
| and need_t2i_ip_adapter | |
| ) | |
| self.need_adain_temporal_cond = need_adain_temporal_cond | |
| self.t2i_ip_adapter_attn_processor = t2i_ip_adapter_attn_processor | |
| if need_refer_emb: | |
| self.first_refer_emb_attns = ReferEmbFuseAttention( | |
| query_dim=block_out_channels[0], | |
| heads=attention_head_dim[0], | |
| dim_head=block_out_channels[0] // attention_head_dim[0], | |
| dropout=0, | |
| bias=False, | |
| cross_attention_dim=None, | |
| upcast_attention=False, | |
| ) | |
| self.mid_block_refer_emb_attns = ReferEmbFuseAttention( | |
| query_dim=block_out_channels[-1], | |
| heads=attention_head_dim[-1], | |
| dim_head=block_out_channels[-1] // attention_head_dim[-1], | |
| dropout=0, | |
| bias=False, | |
| cross_attention_dim=None, | |
| upcast_attention=False, | |
| ) | |
| else: | |
| self.first_refer_emb_attns = None | |
| self.mid_block_refer_emb_attns = None | |
| # down | |
| output_channel = block_out_channels[0] | |
| self.layers_per_block = layers_per_block | |
| self.block_out_channels = block_out_channels | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| femb_channels=frame_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=False, | |
| temporal_conv_block=temporal_conv_block, | |
| temporal_transformer=temporal_transformer, | |
| need_spatial_position_emb=need_spatial_position_emb, | |
| need_t2i_ip_adapter=need_t2i_ip_adapter_param, | |
| ip_adapter_cross_attn=ip_adapter_cross_attn, | |
| need_t2i_facein=need_t2i_facein, | |
| need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
| need_adain_temporal_cond=need_adain_temporal_cond, | |
| resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
| need_refer_emb=need_refer_emb, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| self.mid_block = UNetMidBlock3DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| femb_channels=frame_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=False, | |
| temporal_conv_block=temporal_conv_block, | |
| temporal_transformer=temporal_transformer, | |
| need_spatial_position_emb=need_spatial_position_emb, | |
| need_t2i_ip_adapter=need_t2i_ip_adapter_param, | |
| ip_adapter_cross_attn=ip_adapter_cross_attn, | |
| need_t2i_facein=need_t2i_facein, | |
| need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
| need_adain_temporal_cond=need_adain_temporal_cond, | |
| resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
| ) | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[ | |
| min(i + 1, len(block_out_channels) - 1) | |
| ] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=layers_per_block + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=time_embed_dim, | |
| femb_channels=frame_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| dual_cross_attention=False, | |
| temporal_conv_block=temporal_conv_block, | |
| temporal_transformer=temporal_transformer, | |
| need_spatial_position_emb=need_spatial_position_emb, | |
| need_t2i_ip_adapter=need_t2i_ip_adapter_param, | |
| ip_adapter_cross_attn=ip_adapter_cross_attn, | |
| need_t2i_facein=need_t2i_facein, | |
| need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
| need_adain_temporal_cond=need_adain_temporal_cond, | |
| resnet_2d_skip_time_act=resnet_2d_skip_time_act, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| if norm_num_groups is not None: | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[0], | |
| num_groups=norm_num_groups, | |
| eps=norm_eps, | |
| ) | |
| self.conv_act = nn.SiLU() | |
| else: | |
| self.conv_norm_out = None | |
| self.conv_act = None | |
| conv_out_padding = (conv_out_kernel - 1) // 2 | |
| self.conv_out = nn.Conv2d( | |
| block_out_channels[0], | |
| out_channels, | |
| kernel_size=conv_out_kernel, | |
| padding=conv_out_padding, | |
| ) | |
| self.insert_spatial_self_attn_idx() | |
| # 根据需要hack attn_processor,实现ip_adapter等功能 | |
| if need_t2i_ip_adapter or ip_adapter_cross_attn: | |
| hack_t2i_sd_layer_attn_with_ip( | |
| self, | |
| self_attn_class=Model_Register[t2i_ip_adapter_attn_processor] | |
| if t2i_ip_adapter_attn_processor is not None and need_t2i_ip_adapter | |
| else None, | |
| cross_attn_class=Model_Register[t2i_crossattn_ip_adapter_attn_processor] | |
| if t2i_crossattn_ip_adapter_attn_processor is not None | |
| and ( | |
| ip_adapter_cross_attn or need_t2i_facein or need_t2i_ip_adapter_face | |
| ) | |
| else None, | |
| ) | |
| # logger.debug(pformat(self.attn_processors)) | |
| # 非参数AttnProcessor,就不需要to_k_ip、to_v_ip参数了 | |
| if ( | |
| t2i_ip_adapter_attn_processor is None | |
| or "NonParam" in t2i_ip_adapter_attn_processor | |
| ): | |
| need_t2i_ip_adapter = False | |
| if self.print_idx == 0: | |
| logger.debug("Unet3Model Parameters") | |
| # logger.debug(pformat(self.__dict__)) | |
| # 会在 set_skip_temporal_layers 设置 skip_refer_downblock_emb | |
| # 当为 True 时,会跳过 referencenet_block_emb的影响,主要用于首帧生成 | |
| self.skip_refer_downblock_emb = False | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, | |
| module: torch.nn.Module, | |
| processors: Dict[str, AttentionProcessor], | |
| ): | |
| if hasattr(module, "set_processor"): | |
| processors[f"{name}.processor"] = module.processor | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
| in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
| `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = ( | |
| num_sliceable_layers * [slice_size] | |
| if not isinstance(slice_size, list) | |
| else slice_size | |
| ) | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice( | |
| module: torch.nn.Module, slice_size: List[int] | |
| ): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor( | |
| self, | |
| processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], | |
| strict: bool = True, | |
| ): | |
| r""" | |
| Parameters: | |
| `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| of **all** `Attention` layers. | |
| In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count and strict: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| logger.debug( | |
| f"module {name} set attn processor {processor.__class__.__name__}" | |
| ) | |
| module.set_processor(processor) | |
| else: | |
| if f"{name}.processor" in processor: | |
| logger.debug( | |
| "module {} set attn processor {}".format( | |
| name, processor[f"{name}.processor"].__class__.__name__ | |
| ) | |
| ) | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| else: | |
| logger.debug( | |
| f"module {name} has no new target attn_processor, still use {module.processor.__class__.__name__} " | |
| ) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| self.set_attn_processor(AttnProcessor()) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance( | |
| module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D) | |
| ): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| sample_index: torch.LongTensor = None, | |
| vision_condition_frames_sample: torch.Tensor = None, | |
| vision_conditon_frames_sample_index: torch.LongTensor = None, | |
| sample_frame_rate: int = 10, | |
| skip_temporal_layers: bool = None, | |
| frame_index: torch.LongTensor = None, | |
| down_block_refer_embs: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_refer_emb: Optional[torch.Tensor] = None, | |
| refer_self_attn_emb: Optional[List[torch.Tensor]] = None, | |
| refer_self_attn_emb_mode: Literal["read", "write"] = "read", | |
| vision_clip_emb: torch.Tensor = None, | |
| ip_adapter_scale: float = 1.0, | |
| face_emb: torch.Tensor = None, | |
| facein_scale: float = 1.0, | |
| ip_adapter_face_emb: torch.Tensor = None, | |
| ip_adapter_face_scale: float = 1.0, | |
| do_classifier_free_guidance: bool = False, | |
| pose_guider_emb: torch.Tensor = None, | |
| ) -> Union[UNet3DConditionOutput, Tuple]: | |
| """_summary_ | |
| Args: | |
| sample (torch.FloatTensor): _description_ | |
| timestep (Union[torch.Tensor, float, int]): _description_ | |
| encoder_hidden_states (torch.Tensor): _description_ | |
| class_labels (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
| timestep_cond (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
| attention_mask (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
| cross_attention_kwargs (Optional[Dict[str, Any]], optional): _description_. Defaults to None. | |
| down_block_additional_residuals (Optional[Tuple[torch.Tensor]], optional): _description_. Defaults to None. | |
| mid_block_additional_residual (Optional[torch.Tensor], optional): _description_. Defaults to None. | |
| return_dict (bool, optional): _description_. Defaults to True. | |
| sample_index (torch.LongTensor, optional): _description_. Defaults to None. | |
| vision_condition_frames_sample (torch.Tensor, optional): _description_. Defaults to None. | |
| vision_conditon_frames_sample_index (torch.LongTensor, optional): _description_. Defaults to None. | |
| sample_frame_rate (int, optional): _description_. Defaults to 10. | |
| skip_temporal_layers (bool, optional): _description_. Defaults to None. | |
| frame_index (torch.LongTensor, optional): _description_. Defaults to None. | |
| up_block_additional_residual (Optional[torch.Tensor], optional): 用于up_block的 参考latent. Defaults to None. | |
| down_block_refer_embs (Optional[torch.Tensor], optional): 用于 download 的 参考latent. Defaults to None. | |
| how_fuse_referencenet_emb (Literal, optional): 如何融合 参考 latent. Defaults to ["add", "attn"]="add". | |
| add: 要求 additional_latent 和 latent hw 同尺寸. hw of addtional_latent should be same as of latent | |
| attn: concat bt*h1w1*c and bt*h2w2*c into bt*(h1w1+h2w2)*c, and then as key,value into attn | |
| Raises: | |
| ValueError: _description_ | |
| Returns: | |
| Union[UNet3DConditionOutput, Tuple]: _description_ | |
| """ | |
| if skip_temporal_layers is not None: | |
| self.set_skip_temporal_layers(skip_temporal_layers) | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| # logger.debug("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| batch_size = sample.shape[0] | |
| # when vision_condition_frames_sample is not None and vision_conditon_frames_sample_index is not None | |
| # if not None, b c t h w -> b c (t + n_content ) h w | |
| if vision_condition_frames_sample is not None: | |
| sample = batch_concat_two_tensor_with_index( | |
| sample, | |
| sample_index, | |
| vision_condition_frames_sample, | |
| vision_conditon_frames_sample_index, | |
| dim=2, | |
| ) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| batch_size, channel, num_frames, height, width = sample.shape | |
| # 准备 timestep emb | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| temb = self.time_proj(timesteps) | |
| temb = temb.to(dtype=self.dtype) | |
| emb = self.time_embedding(temb, timestep_cond) | |
| if self.use_anivv1_cfg: | |
| emb = self.time_nonlinearity(emb) | |
| emb = emb.repeat_interleave(repeats=num_frames, dim=0) | |
| # 一致性保持,使条件时序帧的 首帧 timesteps emb 为 0,即不影响视觉条件帧 | |
| # keep consistent with the first frame of vision condition frames | |
| if ( | |
| self.keep_vision_condtion | |
| and num_frames > 1 | |
| and sample_index is not None | |
| and vision_conditon_frames_sample_index is not None | |
| ): | |
| emb = rearrange(emb, "(b t) d -> b t d", t=num_frames) | |
| emb[:, vision_conditon_frames_sample_index, :] = 0 | |
| emb = rearrange(emb, "b t d->(b t) d") | |
| # temporal positional embedding | |
| femb = None | |
| if self.temporal_transformer is not None: | |
| if frame_index is None: | |
| frame_index = torch.arange( | |
| num_frames, dtype=torch.long, device=sample.device | |
| ) | |
| if self.use_anivv1_cfg: | |
| frame_index = (frame_index * sample_frame_rate).to(dtype=torch.long) | |
| femb = self.frame_proj(frame_index) | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"unet prepare frame_index, {femb.shape}, {batch_size}" | |
| ) | |
| femb = repeat(femb, "t d-> b t d", b=batch_size) | |
| else: | |
| # b t -> b t d | |
| assert frame_index.ndim == 2, ValueError( | |
| "ndim of given frame_index should be 2, but {frame_index.ndim}" | |
| ) | |
| femb = torch.stack( | |
| [self.frame_proj(frame_index[i]) for i in range(batch_size)], dim=0 | |
| ) | |
| if self.temporal_transformer is not None: | |
| femb = femb.to(dtype=self.dtype) | |
| femb = self.frame_embedding( | |
| femb, | |
| ) | |
| if self.use_anivv1_cfg: | |
| femb = self.femb_nonlinearity(femb) | |
| if encoder_hidden_states.ndim == 3: | |
| encoder_hidden_states = align_repeat_tensor_single_dim( | |
| encoder_hidden_states, target_length=emb.shape[0], dim=0 | |
| ) | |
| elif encoder_hidden_states.ndim == 4: | |
| encoder_hidden_states = rearrange( | |
| encoder_hidden_states, "b t n q-> (b t) n q" | |
| ) | |
| else: | |
| raise ValueError( | |
| f"only support ndim in [3, 4], but given {encoder_hidden_states.ndim}" | |
| ) | |
| if vision_clip_emb is not None: | |
| if vision_clip_emb.ndim == 4: | |
| vision_clip_emb = rearrange(vision_clip_emb, "b t n q-> (b t) n q") | |
| # 准备 hw 层面的 spatial positional embedding | |
| # prepare spatial_position_emb | |
| if self.need_spatial_position_emb: | |
| # height * width, self.spatial_position_input_dim | |
| spatial_position_emb = get_2d_sincos_pos_embed( | |
| embed_dim=self.spatial_position_input_dim, | |
| grid_size_w=width, | |
| grid_size_h=height, | |
| cls_token=False, | |
| norm_length=self.norm_spatial_length, | |
| max_length=self.spatial_max_length, | |
| ) | |
| spatial_position_emb = torch.from_numpy(spatial_position_emb).to( | |
| device=sample.device, dtype=self.dtype | |
| ) | |
| # height * width, self.spatial_position_embed_dim | |
| spatial_position_emb = self.spatial_position_embedding(spatial_position_emb) | |
| else: | |
| spatial_position_emb = None | |
| # prepare cross_attention_kwargs,ReferenceOnly/IpAdapter的attn_processor需要这些参数 进行 latenst和viscond_latents拆分运算 | |
| if ( | |
| self.need_t2i_ip_adapter | |
| or self.ip_adapter_cross_attn | |
| or self.need_t2i_facein | |
| or self.need_t2i_ip_adapter_face | |
| ): | |
| if cross_attention_kwargs is None: | |
| cross_attention_kwargs = {} | |
| cross_attention_kwargs["num_frames"] = num_frames | |
| cross_attention_kwargs[ | |
| "do_classifier_free_guidance" | |
| ] = do_classifier_free_guidance | |
| cross_attention_kwargs["sample_index"] = sample_index | |
| cross_attention_kwargs[ | |
| "vision_conditon_frames_sample_index" | |
| ] = vision_conditon_frames_sample_index | |
| if self.ip_adapter_cross_attn: | |
| cross_attention_kwargs["vision_clip_emb"] = vision_clip_emb | |
| cross_attention_kwargs["ip_adapter_scale"] = ip_adapter_scale | |
| if self.need_t2i_facein: | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"face_emb={type(face_emb)}, facein_scale={facein_scale}" | |
| ) | |
| cross_attention_kwargs["face_emb"] = face_emb | |
| cross_attention_kwargs["facein_scale"] = facein_scale | |
| if self.need_t2i_ip_adapter_face: | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"ip_adapter_face_emb={type(ip_adapter_face_emb)}, ip_adapter_face_scale={ip_adapter_face_scale}" | |
| ) | |
| cross_attention_kwargs["ip_adapter_face_emb"] = ip_adapter_face_emb | |
| cross_attention_kwargs["ip_adapter_face_scale"] = ip_adapter_face_scale | |
| # 2. pre-process | |
| sample = rearrange(sample, "b c t h w -> (b t) c h w") | |
| sample = self.conv_in(sample) | |
| if pose_guider_emb is not None: | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"sample={sample.shape}, pose_guider_emb={pose_guider_emb.shape}" | |
| ) | |
| sample = sample + pose_guider_emb | |
| if self.print_idx == 0: | |
| logger.debug(f"after conv in sample={sample.mean()}") | |
| if spatial_position_emb is not None: | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"unet3d, transformer_in, spatial_position_emb={spatial_position_emb.shape}" | |
| ) | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"unet vision_conditon_frames_sample_index, {type(vision_conditon_frames_sample_index)}", | |
| ) | |
| if vision_conditon_frames_sample_index is not None: | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"vision_conditon_frames_sample_index shape {vision_conditon_frames_sample_index.shape}", | |
| ) | |
| if self.print_idx == 0: | |
| logger.debug(f"unet sample_index {type(sample_index)}") | |
| if sample_index is not None: | |
| if self.print_idx == 0: | |
| logger.debug(f"sample_index shape {sample_index.shape}") | |
| if self.need_transformer_in: | |
| if self.print_idx == 0: | |
| logger.debug(f"unet3d, transformer_in, sample={sample.shape}") | |
| sample = self.transformer_in( | |
| sample, | |
| femb=femb, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| encoder_hidden_states=encoder_hidden_states, | |
| sample_index=sample_index, | |
| vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
| spatial_position_emb=spatial_position_emb, | |
| ).sample | |
| if ( | |
| self.need_refer_emb | |
| and down_block_refer_embs is not None | |
| and not self.skip_refer_downblock_emb | |
| ): | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"self.first_refer_emb_attns, {self.first_refer_emb_attns.__class__.__name__} {down_block_refer_embs[0].shape}" | |
| ) | |
| sample = self.first_refer_emb_attns( | |
| sample, down_block_refer_embs[0], num_frames=num_frames | |
| ) | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"first_refer_emb_attns, sample is_leaf={sample.is_leaf}, requires_grad={sample.requires_grad}, down_block_refer_embs, {down_block_refer_embs[0].is_leaf}, {down_block_refer_embs[0].requires_grad}," | |
| ) | |
| else: | |
| if self.print_idx == 0: | |
| logger.debug(f"first_refer_emb_attns, no this step") | |
| # 将 refer_self_attn_emb 转化成字典,增加一个当前index,表示block 的对应关系 | |
| # convert refer_self_attn_emb to dict, add a current index to represent the corresponding relationship of the block | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for i_down_block, downsample_block in enumerate(self.down_blocks): | |
| # 使用 attn 的方式 来融合 refer_emb,这里是准备 downblock 对应的 refer_emb | |
| # fuse refer_emb with attn, here is to prepare the refer_emb corresponding to downblock | |
| if ( | |
| not self.need_refer_emb | |
| or down_block_refer_embs is None | |
| or self.skip_refer_downblock_emb | |
| ): | |
| this_down_block_refer_embs = None | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"{i_down_block}, prepare this_down_block_refer_embs, is None" | |
| ) | |
| else: | |
| is_final_block = i_down_block == len(self.block_out_channels) - 1 | |
| num_block = self.layers_per_block + int(not is_final_block * 1) | |
| this_downblock_start_idx = 1 + num_block * i_down_block | |
| this_down_block_refer_embs = down_block_refer_embs[ | |
| this_downblock_start_idx : this_downblock_start_idx + num_block | |
| ] | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"prepare this_down_block_refer_embs, {len(this_down_block_refer_embs)}, {this_down_block_refer_embs[0].shape}" | |
| ) | |
| if self.print_idx == 0: | |
| logger.debug(f"downsample_block {i_down_block}, sample={sample.mean()}") | |
| if ( | |
| hasattr(downsample_block, "has_cross_attention") | |
| and downsample_block.has_cross_attention | |
| ): | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| femb=femb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| sample_index=sample_index, | |
| vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
| spatial_position_emb=spatial_position_emb, | |
| refer_embs=this_down_block_refer_embs, | |
| refer_self_attn_emb=refer_self_attn_emb, | |
| refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| femb=femb, | |
| num_frames=num_frames, | |
| sample_index=sample_index, | |
| vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
| spatial_position_emb=spatial_position_emb, | |
| refer_embs=this_down_block_refer_embs, | |
| refer_self_attn_emb=refer_self_attn_emb, | |
| refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
| ) | |
| # resize spatial_position_emb | |
| if self.need_spatial_position_emb: | |
| has_downblock = i_down_block < len(self.down_blocks) - 1 | |
| if has_downblock: | |
| spatial_position_emb = resize_spatial_position_emb( | |
| spatial_position_emb, | |
| scale=0.5, | |
| height=sample.shape[2] * 2, | |
| width=sample.shape[3] * 2, | |
| ) | |
| down_block_res_samples += res_samples | |
| if down_block_additional_residuals is not None: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample = ( | |
| down_block_res_sample + down_block_additional_residual | |
| ) | |
| new_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| femb=femb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| sample_index=sample_index, | |
| vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
| spatial_position_emb=spatial_position_emb, | |
| refer_self_attn_emb=refer_self_attn_emb, | |
| refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
| ) | |
| # 使用 attn 的方式 来融合 mid_block_refer_emb | |
| # fuse mid_block_refer_emb with attn | |
| if ( | |
| self.mid_block_refer_emb_attns is not None | |
| and mid_block_refer_emb is not None | |
| and not self.skip_refer_downblock_emb | |
| ): | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"self.mid_block_refer_emb_attns={self.mid_block_refer_emb_attns}, mid_block_refer_emb={mid_block_refer_emb.shape}" | |
| ) | |
| sample = self.mid_block_refer_emb_attns( | |
| sample, mid_block_refer_emb, num_frames=num_frames | |
| ) | |
| if self.print_idx == 0: | |
| logger.debug( | |
| f"mid_block_refer_emb_attns, sample is_leaf={sample.is_leaf}, requires_grad={sample.requires_grad}, mid_block_refer_emb, {mid_block_refer_emb[0].is_leaf}, {mid_block_refer_emb[0].requires_grad}," | |
| ) | |
| else: | |
| if self.print_idx == 0: | |
| logger.debug(f"mid_block_refer_emb_attns, no this step") | |
| if mid_block_additional_residual is not None: | |
| sample = sample + mid_block_additional_residual | |
| # 5. up | |
| for i_up_block, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i_up_block == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[ | |
| : -len(upsample_block.resnets) | |
| ] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if ( | |
| hasattr(upsample_block, "has_cross_attention") | |
| and upsample_block.has_cross_attention | |
| ): | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| femb=femb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| num_frames=num_frames, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| sample_index=sample_index, | |
| vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
| spatial_position_emb=spatial_position_emb, | |
| refer_self_attn_emb=refer_self_attn_emb, | |
| refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| femb=femb, | |
| res_hidden_states_tuple=res_samples, | |
| upsample_size=upsample_size, | |
| num_frames=num_frames, | |
| sample_index=sample_index, | |
| vision_conditon_frames_sample_index=vision_conditon_frames_sample_index, | |
| spatial_position_emb=spatial_position_emb, | |
| refer_self_attn_emb=refer_self_attn_emb, | |
| refer_self_attn_emb_mode=refer_self_attn_emb_mode, | |
| ) | |
| # resize spatial_position_emb | |
| if self.need_spatial_position_emb: | |
| has_upblock = i_up_block < len(self.up_blocks) - 1 | |
| if has_upblock: | |
| spatial_position_emb = resize_spatial_position_emb( | |
| spatial_position_emb, | |
| scale=2, | |
| height=int(sample.shape[2] / 2), | |
| width=int(sample.shape[3] / 2), | |
| ) | |
| # 6. post-process | |
| if self.conv_norm_out: | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| sample = rearrange(sample, "(b t) c h w -> b c t h w", t=num_frames) | |
| # if self.need_adain_temporal_cond and num_frames > 1: | |
| # sample = batch_adain_conditioned_tensor( | |
| # sample, | |
| # num_frames=num_frames, | |
| # need_style_fidelity=False, | |
| # src_index=sample_index, | |
| # dst_index=vision_conditon_frames_sample_index, | |
| # ) | |
| self.print_idx += 1 | |
| if skip_temporal_layers is not None: | |
| self.set_skip_temporal_layers(not skip_temporal_layers) | |
| if not return_dict: | |
| return (sample,) | |
| else: | |
| return UNet3DConditionOutput(sample=sample) | |
| # from https://github.com/huggingface/diffusers/blob/v0.16.1/src/diffusers/models/modeling_utils.py#L328 | |
| def from_pretrained_2d( | |
| cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs | |
| ): | |
| r""" | |
| Instantiate a pretrained pytorch model from a pre-trained model configuration. | |
| The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train | |
| the model, you should first set it back in training mode with `model.train()`. | |
| The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come | |
| pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning | |
| task. | |
| The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those | |
| weights are discarded. | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
| Can be either: | |
| - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
| Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. | |
| - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., | |
| `./my_model_directory/`. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
| standard cache should not be used. | |
| torch_dtype (`str` or `torch.dtype`, *optional*): | |
| Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype | |
| will be automatically derived from the model's weights. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
| file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| output_loading_info(`bool`, *optional*, defaults to `False`): | |
| Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
| local_files_only(`bool`, *optional*, defaults to `False`): | |
| Whether or not to only look at local files (i.e., do not try to download the model). | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `diffusers-cli login` (stored in `~/.huggingface`). | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| from_flax (`bool`, *optional*, defaults to `False`): | |
| Load the model weights from a Flax checkpoint save file. | |
| subfolder (`str`, *optional*, defaults to `""`): | |
| In case the relevant files are located inside a subfolder of the model repo (either remote in | |
| huggingface.co or downloaded locally), you can specify the folder name here. | |
| mirror (`str`, *optional*): | |
| Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
| problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
| Please refer to the mirror site for more information. | |
| device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
| A map that specifies where each submodule should go. It doesn't need to be refined to each | |
| parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the | |
| same device. | |
| To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For | |
| more information about each option see [designing a device | |
| map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
| low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
| Speed up model loading by not initializing the weights and only loading the pre-trained weights. This | |
| also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the | |
| model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, | |
| setting this argument to `True` will raise an error. | |
| variant (`str`, *optional*): | |
| If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is | |
| ignored when using `from_flax`. | |
| use_safetensors (`bool`, *optional* ): | |
| If set to `True`, the pipeline will forcibly load the models from `safetensors` weights. If set to | |
| `None` (the default). The pipeline will load using `safetensors` if safetensors weights are available | |
| *and* if `safetensors` is installed. If the to `False` the pipeline will *not* use `safetensors`. | |
| <Tip> | |
| It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated | |
| models](https://huggingface.co/docs/hub/models-gated#gated-models). | |
| </Tip> | |
| <Tip> | |
| Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use | |
| this method in a firewalled environment. | |
| </Tip> | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
| force_download = kwargs.pop("force_download", False) | |
| from_flax = kwargs.pop("from_flax", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| output_loading_info = kwargs.pop("output_loading_info", False) | |
| local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| subfolder = kwargs.pop("subfolder", None) | |
| device_map = kwargs.pop("device_map", None) | |
| low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
| variant = kwargs.pop("variant", None) | |
| use_safetensors = kwargs.pop("use_safetensors", None) | |
| strict = kwargs.pop("strict", True) | |
| allow_pickle = False | |
| if use_safetensors is None: | |
| allow_pickle = True | |
| if low_cpu_mem_usage and not is_accelerate_available(): | |
| low_cpu_mem_usage = False | |
| logger.warning( | |
| "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
| " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
| " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
| " install accelerate\n```\n." | |
| ) | |
| if device_map is not None and not is_accelerate_available(): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
| " `device_map=None`. You can install accelerate with `pip install accelerate`." | |
| ) | |
| # Check if we can handle device_map and dispatching the weights | |
| if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `device_map=None`." | |
| ) | |
| if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
| raise NotImplementedError( | |
| "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
| " `low_cpu_mem_usage=False`." | |
| ) | |
| if low_cpu_mem_usage is False and device_map is not None: | |
| raise ValueError( | |
| f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
| " dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
| ) | |
| # Load config if we don't provide a configuration | |
| config_path = pretrained_model_name_or_path | |
| user_agent = { | |
| "diffusers": __version__, | |
| "file_type": "model", | |
| "framework": "pytorch", | |
| } | |
| # load config | |
| config, unused_kwargs, commit_hash = cls.load_config( | |
| config_path, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| return_commit_hash=True, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| device_map=device_map, | |
| user_agent=user_agent, | |
| **kwargs, | |
| ) | |
| config["_class_name"] = cls.__name__ | |
| config["down_block_types"] = convert_2D_to_3D(config["down_block_types"]) | |
| if "mid_block_type" in config: | |
| config["mid_block_type"] = convert_2D_to_3D(config["mid_block_type"]) | |
| else: | |
| config["mid_block_type"] = "UNetMidBlock3DCrossAttn" | |
| config["up_block_types"] = convert_2D_to_3D(config["up_block_types"]) | |
| # load model | |
| model_file = None | |
| if from_flax: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=FLAX_WEIGHTS_NAME, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| model = cls.from_config(config, **unused_kwargs) | |
| # Convert the weights | |
| from diffusers.models.modeling_pytorch_flax_utils import ( | |
| load_flax_checkpoint_in_pytorch_model, | |
| ) | |
| model = load_flax_checkpoint_in_pytorch_model(model, model_file) | |
| else: | |
| try: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| except IOError as e: | |
| if not allow_pickle: | |
| raise e | |
| pass | |
| if model_file is None: | |
| model_file = _get_model_file( | |
| pretrained_model_name_or_path, | |
| weights_name=_add_variant(WEIGHTS_NAME, variant), | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| subfolder=subfolder, | |
| user_agent=user_agent, | |
| commit_hash=commit_hash, | |
| ) | |
| if low_cpu_mem_usage: | |
| # Instantiate model with empty weights | |
| with accelerate.init_empty_weights(): | |
| model = cls.from_config(config, **unused_kwargs) | |
| # if device_map is None, load the state dict and move the params from meta device to the cpu | |
| if device_map is None: | |
| param_device = "cpu" | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| # move the params from meta device to cpu | |
| missing_keys = set(model.state_dict().keys()) - set( | |
| state_dict.keys() | |
| ) | |
| if len(missing_keys) > 0: | |
| if strict: | |
| raise ValueError( | |
| f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" | |
| f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
| " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
| " those weights or else make sure your checkpoint file is correct." | |
| ) | |
| else: | |
| logger.warning( | |
| f"model{cls} has no target pretrained paramter from {pretrained_model_name_or_path}, {', '.join(missing_keys)}" | |
| ) | |
| empty_state_dict = model.state_dict() | |
| for param_name, param in state_dict.items(): | |
| accepts_dtype = "dtype" in set( | |
| inspect.signature( | |
| set_module_tensor_to_device | |
| ).parameters.keys() | |
| ) | |
| if empty_state_dict[param_name].shape != param.shape: | |
| raise ValueError( | |
| f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example." | |
| ) | |
| if accepts_dtype: | |
| set_module_tensor_to_device( | |
| model, | |
| param_name, | |
| param_device, | |
| value=param, | |
| dtype=torch_dtype, | |
| ) | |
| else: | |
| set_module_tensor_to_device( | |
| model, param_name, param_device, value=param | |
| ) | |
| else: # else let accelerate handle loading and dispatching. | |
| # Load weights and dispatch according to the device_map | |
| # by default the device_map is None and the weights are loaded on the CPU | |
| accelerate.load_checkpoint_and_dispatch( | |
| model, model_file, device_map, dtype=torch_dtype | |
| ) | |
| loading_info = { | |
| "missing_keys": [], | |
| "unexpected_keys": [], | |
| "mismatched_keys": [], | |
| "error_msgs": [], | |
| } | |
| else: | |
| model = cls.from_config(config, **unused_kwargs) | |
| state_dict = load_state_dict(model_file, variant=variant) | |
| ( | |
| model, | |
| missing_keys, | |
| unexpected_keys, | |
| mismatched_keys, | |
| error_msgs, | |
| ) = cls._load_pretrained_model( | |
| model, | |
| state_dict, | |
| model_file, | |
| pretrained_model_name_or_path, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| ) | |
| loading_info = { | |
| "missing_keys": missing_keys, | |
| "unexpected_keys": unexpected_keys, | |
| "mismatched_keys": mismatched_keys, | |
| "error_msgs": error_msgs, | |
| } | |
| if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
| raise ValueError( | |
| f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
| ) | |
| elif torch_dtype is not None: | |
| model = model.to(torch_dtype) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| # Set model in evaluation mode to deactivate DropOut modules by default | |
| model.eval() | |
| if output_loading_info: | |
| return model, loading_info | |
| return model | |
| def set_skip_temporal_layers( | |
| self, | |
| valid: bool, | |
| ) -> None: # turn 3Dunet to 2Dunet | |
| # Recursively walk through all the children. | |
| # Any children which exposes the skip_temporal_layers parameter gets the message | |
| # 推断时使用参数控制refer_image和ip_adapter_image来控制,不需要这里了 | |
| # if hasattr(self, "skip_refer_downblock_emb"): | |
| # self.skip_refer_downblock_emb = valid | |
| def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
| if hasattr(module, "skip_temporal_layers"): | |
| module.skip_temporal_layers = valid | |
| # if hasattr(module, "skip_refer_downblock_emb"): | |
| # module.skip_refer_downblock_emb = valid | |
| for child in module.children(): | |
| fn_recursive_set_mem_eff(child) | |
| for module in self.children(): | |
| if isinstance(module, torch.nn.Module): | |
| fn_recursive_set_mem_eff(module) | |
| def insert_spatial_self_attn_idx(self): | |
| attns, basic_transformers = self.spatial_self_attns | |
| self.self_attn_num = len(attns) | |
| for i, (name, layer) in enumerate(attns): | |
| logger.debug( | |
| f"{self.__class__.__name__}, {i}, {name}, {layer.__class__.__name__}" | |
| ) | |
| layer.spatial_self_attn_idx = i | |
| for i, (name, layer) in enumerate(basic_transformers): | |
| logger.debug( | |
| f"{self.__class__.__name__}, {i}, {name}, {layer.__class__.__name__}" | |
| ) | |
| layer.spatial_self_attn_idx = i | |
| def spatial_self_attns( | |
| self, | |
| ) -> List[Tuple[str, Attention]]: | |
| attns, spatial_transformers = self.get_attns( | |
| include="attentions", exclude="temp_attentions", attn_name="attn1" | |
| ) | |
| attns = sorted(attns) | |
| spatial_transformers = sorted(spatial_transformers) | |
| return attns, spatial_transformers | |
| def spatial_cross_attns( | |
| self, | |
| ) -> List[Tuple[str, Attention]]: | |
| attns, spatial_transformers = self.get_attns( | |
| include="attentions", exclude="temp_attentions", attn_name="attn2" | |
| ) | |
| attns = sorted(attns) | |
| spatial_transformers = sorted(spatial_transformers) | |
| return attns, spatial_transformers | |
| def get_attns( | |
| self, | |
| attn_name: str, | |
| include: str = None, | |
| exclude: str = None, | |
| ) -> List[Tuple[str, Attention]]: | |
| r""" | |
| Returns: | |
| `dict` of attention attns: A dictionary containing all attention attns used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| attns = [] | |
| spatial_transformers = [] | |
| def fn_recursive_add_attns( | |
| name: str, | |
| module: torch.nn.Module, | |
| attns: List[Tuple[str, Attention]], | |
| spatial_transformers: List[Tuple[str, BasicTransformerBlock]], | |
| ): | |
| is_target = False | |
| if isinstance(module, BasicTransformerBlock) and hasattr(module, attn_name): | |
| is_target = True | |
| if include is not None: | |
| is_target = include in name | |
| if exclude is not None: | |
| is_target = exclude not in name | |
| if is_target: | |
| attns.append([f"{name}.{attn_name}", getattr(module, attn_name)]) | |
| spatial_transformers.append([f"{name}", module]) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_attns( | |
| f"{name}.{sub_name}", child, attns, spatial_transformers | |
| ) | |
| return attns | |
| for name, module in self.named_children(): | |
| fn_recursive_add_attns(name, module, attns, spatial_transformers) | |
| return attns, spatial_transformers | |