Spaces:
Runtime error
Runtime error
space init
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app_gradio_space.py +424 -0
- data/demo/cyber_girl.png +0 -0
- data/demo/video1.mp4 +3 -0
- data/images/seaside4.jpeg +0 -0
- data/images/yongen.jpeg +0 -0
- gradio_text2video.py +949 -0
- gradio_video2video.py +1039 -0
- requirements.txt +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: red
|
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.26.0
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
license: creativeml-openrail-m
|
| 11 |
---
|
|
|
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.26.0
|
| 8 |
+
app_file: app_gradio_space.py
|
| 9 |
pinned: false
|
| 10 |
license: creativeml-openrail-m
|
| 11 |
---
|
app_gradio_space.py
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import pdb
|
| 4 |
+
|
| 5 |
+
import cuid
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
+
import numpy as np
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
from huggingface_hub import snapshot_download
|
| 12 |
+
import subprocess
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
ProjectDir = os.path.abspath(os.path.dirname(__file__))
|
| 16 |
+
CheckpointsDir = os.path.join(ProjectDir, "checkpoints")
|
| 17 |
+
|
| 18 |
+
result = subprocess.run(
|
| 19 |
+
["pip", "install", "--no-cache-dir", "-U", "openmim"],
|
| 20 |
+
capture_output=True,
|
| 21 |
+
text=True,
|
| 22 |
+
)
|
| 23 |
+
print(result)
|
| 24 |
+
|
| 25 |
+
result = subprocess.run(["mim", "install", "mmengine"], capture_output=True, text=True)
|
| 26 |
+
print(result)
|
| 27 |
+
|
| 28 |
+
result = subprocess.run(
|
| 29 |
+
["mim", "install", "mmcv>=2.0.1"], capture_output=True, text=True
|
| 30 |
+
)
|
| 31 |
+
print(result)
|
| 32 |
+
|
| 33 |
+
result = subprocess.run(
|
| 34 |
+
["mim", "install", "mmdet>=3.1.0"], capture_output=True, text=True
|
| 35 |
+
)
|
| 36 |
+
print(result)
|
| 37 |
+
|
| 38 |
+
result = subprocess.run(
|
| 39 |
+
["mim", "install", "mmpose>=1.1.0"], capture_output=True, text=True
|
| 40 |
+
)
|
| 41 |
+
print(result)
|
| 42 |
+
ignore_video2video = True
|
| 43 |
+
max_image_edge = 960
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def download_model():
|
| 47 |
+
if not os.path.exists(CheckpointsDir):
|
| 48 |
+
print("Checkpoint Not Downloaded, start downloading...")
|
| 49 |
+
tic = time.time()
|
| 50 |
+
snapshot_download(
|
| 51 |
+
repo_id="TMElyralab/MuseV",
|
| 52 |
+
local_dir=CheckpointsDir,
|
| 53 |
+
max_workers=8,
|
| 54 |
+
local_dir_use_symlinks=True,
|
| 55 |
+
)
|
| 56 |
+
toc = time.time()
|
| 57 |
+
print(f"download cost {toc-tic} seconds")
|
| 58 |
+
else:
|
| 59 |
+
print("Already download the model.")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
download_model() # for huggingface deployment.
|
| 63 |
+
if not ignore_video2video:
|
| 64 |
+
from gradio_video2video import online_v2v_inference
|
| 65 |
+
from gradio_text2video import online_t2v_inference
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@spaces.GPU(duration=180)
|
| 69 |
+
def hf_online_t2v_inference(
|
| 70 |
+
prompt,
|
| 71 |
+
image_np,
|
| 72 |
+
seed,
|
| 73 |
+
fps,
|
| 74 |
+
w,
|
| 75 |
+
h,
|
| 76 |
+
video_len,
|
| 77 |
+
img_edge_ratio,
|
| 78 |
+
):
|
| 79 |
+
img_edge_ratio, _, _ = limit_shape(
|
| 80 |
+
image_np, w, h, img_edge_ratio, max_image_edge=max_image_edge
|
| 81 |
+
)
|
| 82 |
+
if not isinstance(image_np, np.ndarray): # None
|
| 83 |
+
raise gr.Error("Need input reference image")
|
| 84 |
+
return online_t2v_inference(
|
| 85 |
+
prompt, image_np, seed, fps, w, h, video_len, img_edge_ratio
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@spaces.GPU(duration=180)
|
| 90 |
+
def hg_online_v2v_inference(
|
| 91 |
+
prompt,
|
| 92 |
+
image_np,
|
| 93 |
+
video,
|
| 94 |
+
processor,
|
| 95 |
+
seed,
|
| 96 |
+
fps,
|
| 97 |
+
w,
|
| 98 |
+
h,
|
| 99 |
+
video_length,
|
| 100 |
+
img_edge_ratio,
|
| 101 |
+
):
|
| 102 |
+
img_edge_ratio, _, _ = limit_shape(
|
| 103 |
+
image_np, w, h, img_edge_ratio, max_image_edge=max_image_edge
|
| 104 |
+
)
|
| 105 |
+
if not isinstance(image_np, np.ndarray): # None
|
| 106 |
+
raise gr.Error("Need input reference image")
|
| 107 |
+
return online_v2v_inference(
|
| 108 |
+
prompt,
|
| 109 |
+
image_np,
|
| 110 |
+
video,
|
| 111 |
+
processor,
|
| 112 |
+
seed,
|
| 113 |
+
fps,
|
| 114 |
+
w,
|
| 115 |
+
h,
|
| 116 |
+
video_length,
|
| 117 |
+
img_edge_ratio,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def limit_shape(image, input_w, input_h, img_edge_ratio, max_image_edge=max_image_edge):
|
| 122 |
+
"""limite generation video shape to avoid gpu memory overflow"""
|
| 123 |
+
if input_h == -1 and input_w == -1:
|
| 124 |
+
if isinstance(image, np.ndarray):
|
| 125 |
+
input_h, input_w, _ = image.shape
|
| 126 |
+
elif isinstance(image, PIL.Image.Image):
|
| 127 |
+
input_w, input_h = image.size
|
| 128 |
+
else:
|
| 129 |
+
raise ValueError(
|
| 130 |
+
f"image should be in [image, ndarray], but given {type(image)}"
|
| 131 |
+
)
|
| 132 |
+
if img_edge_ratio == 0:
|
| 133 |
+
img_edge_ratio = 1
|
| 134 |
+
img_edge_ratio_infact = min(max_image_edge / max(input_h, input_w), img_edge_ratio)
|
| 135 |
+
# print(
|
| 136 |
+
# image.shape,
|
| 137 |
+
# input_w,
|
| 138 |
+
# input_h,
|
| 139 |
+
# img_edge_ratio,
|
| 140 |
+
# max_image_edge,
|
| 141 |
+
# img_edge_ratio_infact,
|
| 142 |
+
# )
|
| 143 |
+
if img_edge_ratio != 1:
|
| 144 |
+
return (
|
| 145 |
+
img_edge_ratio_infact,
|
| 146 |
+
input_w * img_edge_ratio_infact,
|
| 147 |
+
input_h * img_edge_ratio_infact,
|
| 148 |
+
)
|
| 149 |
+
else:
|
| 150 |
+
return img_edge_ratio_infact, -1, -1
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def limit_length(length):
|
| 154 |
+
"""limite generation video frames numer to avoid gpu memory overflow"""
|
| 155 |
+
|
| 156 |
+
if length > 24 * 6:
|
| 157 |
+
gr.Warning("Length need to smaller than 144, dute to gpu memory limit")
|
| 158 |
+
length = 24 * 6
|
| 159 |
+
return length
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class ConcatenateBlock(gr.blocks.Block):
|
| 163 |
+
def __init__(self, options):
|
| 164 |
+
self.options = options
|
| 165 |
+
self.current_string = ""
|
| 166 |
+
|
| 167 |
+
def update_string(self, new_choice):
|
| 168 |
+
if new_choice and new_choice not in self.current_string.split(", "):
|
| 169 |
+
if self.current_string == "":
|
| 170 |
+
self.current_string = new_choice
|
| 171 |
+
else:
|
| 172 |
+
self.current_string += ", " + new_choice
|
| 173 |
+
return self.current_string
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def process_input(new_choice):
|
| 177 |
+
return concatenate_block.update_string(new_choice), ""
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
control_options = [
|
| 181 |
+
"pose",
|
| 182 |
+
"pose_body",
|
| 183 |
+
"pose_hand",
|
| 184 |
+
"pose_face",
|
| 185 |
+
"pose_hand_body",
|
| 186 |
+
"pose_hand_face",
|
| 187 |
+
"dwpose",
|
| 188 |
+
"dwpose_face",
|
| 189 |
+
"dwpose_hand",
|
| 190 |
+
"dwpose_body",
|
| 191 |
+
"dwpose_body_hand",
|
| 192 |
+
"canny",
|
| 193 |
+
"tile",
|
| 194 |
+
"hed",
|
| 195 |
+
"hed_scribble",
|
| 196 |
+
"depth",
|
| 197 |
+
"pidi",
|
| 198 |
+
"normal_bae",
|
| 199 |
+
"lineart",
|
| 200 |
+
"lineart_anime",
|
| 201 |
+
"zoe",
|
| 202 |
+
"sam",
|
| 203 |
+
"mobile_sam",
|
| 204 |
+
"leres",
|
| 205 |
+
"content",
|
| 206 |
+
"face_detector",
|
| 207 |
+
]
|
| 208 |
+
concatenate_block = ConcatenateBlock(control_options)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
with gr.Blocks(css=css) as demo:
|
| 215 |
+
gr.Markdown(
|
| 216 |
+
"<div align='center'> <h1> MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising</span> </h1> \
|
| 217 |
+
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
|
| 218 |
+
</br>\
|
| 219 |
+
Zhiqiang Xia <sup>*</sup>,\
|
| 220 |
+
Zhaokang Chen<sup>*</sup>,\
|
| 221 |
+
Bin Wu<sup>†</sup>,\
|
| 222 |
+
Chao Li,\
|
| 223 |
+
Kwok-Wai Hung,\
|
| 224 |
+
Chao Zhan,\
|
| 225 |
+
Yingjie He,\
|
| 226 |
+
Wenjiang Zhou\
|
| 227 |
+
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, [email protected])\
|
| 228 |
+
</br>\
|
| 229 |
+
Lyra Lab, Tencent Music Entertainment\
|
| 230 |
+
</h2> \
|
| 231 |
+
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseV'>[Github Repo]</a>\
|
| 232 |
+
<a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
|
| 233 |
+
<a style='font-size:18px;color: #000000' href=''> [ArXiv(Coming Soon)] </a>\
|
| 234 |
+
<a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> \
|
| 235 |
+
<a style='font-size:18px;color: #000000'>If MuseV is useful, please help star the repo~ </a> </div>"
|
| 236 |
+
)
|
| 237 |
+
with gr.Tab("Text to Video"):
|
| 238 |
+
with gr.Row():
|
| 239 |
+
with gr.Column():
|
| 240 |
+
prompt = gr.Textbox(label="Prompt")
|
| 241 |
+
image = gr.Image(label="VisionCondImage")
|
| 242 |
+
seed = gr.Number(
|
| 243 |
+
label="Seed (seed=-1 means that the seeds run each time are different)",
|
| 244 |
+
value=-1,
|
| 245 |
+
)
|
| 246 |
+
video_length = gr.Number(
|
| 247 |
+
label="Video Length(need smaller than 144,If you want to be able to generate longer videos, run it locally )",
|
| 248 |
+
value=12,
|
| 249 |
+
)
|
| 250 |
+
fps = gr.Number(label="Generate Video FPS", value=6)
|
| 251 |
+
gr.Markdown(
|
| 252 |
+
(
|
| 253 |
+
"If W&H is -1, then use the Reference Image's Size. Size of target video is $(W, H)*img\_edge\_ratio$. \n"
|
| 254 |
+
"The shorter the image size, the larger the motion amplitude, and the lower video quality.\n"
|
| 255 |
+
"The longer the W&H, the smaller the motion amplitude, and the higher video quality.\n"
|
| 256 |
+
"Due to the GPU VRAM limits, the W&H need smaller than 960px"
|
| 257 |
+
)
|
| 258 |
+
)
|
| 259 |
+
with gr.Row():
|
| 260 |
+
w = gr.Number(label="Width", value=-1)
|
| 261 |
+
h = gr.Number(label="Height", value=-1)
|
| 262 |
+
img_edge_ratio = gr.Number(label="img_edge_ratio", value=1.0)
|
| 263 |
+
with gr.Row():
|
| 264 |
+
out_w = gr.Number(label="Output Width", value=0, interactive=False)
|
| 265 |
+
out_h = gr.Number(label="Output Height", value=0, interactive=False)
|
| 266 |
+
img_edge_ratio_infact = gr.Number(
|
| 267 |
+
label="img_edge_ratio in fact",
|
| 268 |
+
value=1.0,
|
| 269 |
+
interactive=False,
|
| 270 |
+
)
|
| 271 |
+
btn1 = gr.Button("Generate")
|
| 272 |
+
out = gr.Video()
|
| 273 |
+
# pdb.set_trace()
|
| 274 |
+
i2v_examples_256 = [
|
| 275 |
+
[
|
| 276 |
+
"(masterpiece, best quality, highres:1),(1boy, solo:1),(eye blinks:1.8),(head wave:1.3)",
|
| 277 |
+
"../../data/images/yongen.jpeg",
|
| 278 |
+
],
|
| 279 |
+
[
|
| 280 |
+
"(masterpiece, best quality, highres:1), peaceful beautiful sea scene",
|
| 281 |
+
"../../data/images/seaside4.jpeg",
|
| 282 |
+
],
|
| 283 |
+
]
|
| 284 |
+
with gr.Row():
|
| 285 |
+
gr.Examples(
|
| 286 |
+
examples=i2v_examples_256,
|
| 287 |
+
inputs=[prompt, image],
|
| 288 |
+
outputs=[out],
|
| 289 |
+
fn=hf_online_t2v_inference,
|
| 290 |
+
cache_examples=False,
|
| 291 |
+
)
|
| 292 |
+
img_edge_ratio.change(
|
| 293 |
+
fn=limit_shape,
|
| 294 |
+
inputs=[image, w, h, img_edge_ratio],
|
| 295 |
+
outputs=[img_edge_ratio_infact, out_w, out_h],
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
video_length.change(
|
| 299 |
+
fn=limit_length, inputs=[video_length], outputs=[video_length]
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
btn1.click(
|
| 303 |
+
fn=hf_online_t2v_inference,
|
| 304 |
+
inputs=[
|
| 305 |
+
prompt,
|
| 306 |
+
image,
|
| 307 |
+
seed,
|
| 308 |
+
fps,
|
| 309 |
+
w,
|
| 310 |
+
h,
|
| 311 |
+
video_length,
|
| 312 |
+
img_edge_ratio_infact,
|
| 313 |
+
],
|
| 314 |
+
outputs=out,
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
with gr.Tab("Video to Video"):
|
| 318 |
+
if ignore_video2video:
|
| 319 |
+
gr.Markdown(
|
| 320 |
+
(
|
| 321 |
+
"Due to GPU limit, MuseVDemo now only support Text2Video. If you want to try Video2Video, please run it locally. \n"
|
| 322 |
+
"We are trying to support video2video in the future. Thanks for your understanding."
|
| 323 |
+
)
|
| 324 |
+
)
|
| 325 |
+
else:
|
| 326 |
+
with gr.Row():
|
| 327 |
+
with gr.Column():
|
| 328 |
+
prompt = gr.Textbox(label="Prompt")
|
| 329 |
+
gr.Markdown(
|
| 330 |
+
(
|
| 331 |
+
"pose of VisionCondImage should be same as of the first frame of the video. "
|
| 332 |
+
"its better generate target first frame whose pose is same as of first frame of the video with text2image tool, sch as MJ, SDXL."
|
| 333 |
+
)
|
| 334 |
+
)
|
| 335 |
+
image = gr.Image(label="VisionCondImage")
|
| 336 |
+
video = gr.Video(label="ReferVideo")
|
| 337 |
+
# radio = gr.inputs.Radio(, label="Select an option")
|
| 338 |
+
# ctr_button = gr.inputs.Button(label="Add ControlNet List")
|
| 339 |
+
# output_text = gr.outputs.Textbox()
|
| 340 |
+
processor = gr.Textbox(
|
| 341 |
+
label=f"Control Condition. gradio code now only support dwpose_body_hand, use command can support multi of {control_options}",
|
| 342 |
+
value="dwpose_body_hand",
|
| 343 |
+
)
|
| 344 |
+
gr.Markdown("seed=-1 means that seeds are different in every run")
|
| 345 |
+
seed = gr.Number(
|
| 346 |
+
label="Seed (seed=-1 means that the seeds run each time are different)",
|
| 347 |
+
value=-1,
|
| 348 |
+
)
|
| 349 |
+
video_length = gr.Number(label="Video Length", value=12)
|
| 350 |
+
fps = gr.Number(label="Generate Video FPS", value=6)
|
| 351 |
+
gr.Markdown(
|
| 352 |
+
(
|
| 353 |
+
"If W&H is -1, then use the Reference Image's Size. Size of target video is $(W, H)*img\_edge\_ratio$. \n"
|
| 354 |
+
"The shorter the image size, the larger the motion amplitude, and the lower video quality.\n"
|
| 355 |
+
"The longer the W&H, the smaller the motion amplitude, and the higher video quality.\n"
|
| 356 |
+
"Due to the GPU VRAM limits, the W&H need smaller than 2000px"
|
| 357 |
+
)
|
| 358 |
+
)
|
| 359 |
+
with gr.Row():
|
| 360 |
+
w = gr.Number(label="Width", value=-1)
|
| 361 |
+
h = gr.Number(label="Height", value=-1)
|
| 362 |
+
img_edge_ratio = gr.Number(label="img_edge_ratio", value=1.0)
|
| 363 |
+
|
| 364 |
+
with gr.Row():
|
| 365 |
+
out_w = gr.Number(label="Width", value=0, interactive=False)
|
| 366 |
+
out_h = gr.Number(label="Height", value=0, interactive=False)
|
| 367 |
+
img_edge_ratio_infact = gr.Number(
|
| 368 |
+
label="img_edge_ratio in fact",
|
| 369 |
+
value=1.0,
|
| 370 |
+
interactive=False,
|
| 371 |
+
)
|
| 372 |
+
btn2 = gr.Button("Generate")
|
| 373 |
+
out1 = gr.Video()
|
| 374 |
+
|
| 375 |
+
v2v_examples_256 = [
|
| 376 |
+
[
|
| 377 |
+
"(masterpiece, best quality, highres:1), harley quinn is dancing, animation, by joshua klein",
|
| 378 |
+
"../../data/demo/cyber_girl.png",
|
| 379 |
+
"../../data/demo/video1.mp4",
|
| 380 |
+
],
|
| 381 |
+
]
|
| 382 |
+
with gr.Row():
|
| 383 |
+
gr.Examples(
|
| 384 |
+
examples=v2v_examples_256,
|
| 385 |
+
inputs=[prompt, image, video],
|
| 386 |
+
outputs=[out],
|
| 387 |
+
fn=hg_online_v2v_inference,
|
| 388 |
+
cache_examples=False,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
img_edge_ratio.change(
|
| 392 |
+
fn=limit_shape,
|
| 393 |
+
inputs=[image, w, h, img_edge_ratio],
|
| 394 |
+
outputs=[img_edge_ratio_infact, out_w, out_h],
|
| 395 |
+
)
|
| 396 |
+
video_length.change(
|
| 397 |
+
fn=limit_length, inputs=[video_length], outputs=[video_length]
|
| 398 |
+
)
|
| 399 |
+
btn2.click(
|
| 400 |
+
fn=hg_online_v2v_inference,
|
| 401 |
+
inputs=[
|
| 402 |
+
prompt,
|
| 403 |
+
image,
|
| 404 |
+
video,
|
| 405 |
+
processor,
|
| 406 |
+
seed,
|
| 407 |
+
fps,
|
| 408 |
+
w,
|
| 409 |
+
h,
|
| 410 |
+
video_length,
|
| 411 |
+
img_edge_ratio_infact,
|
| 412 |
+
],
|
| 413 |
+
outputs=out1,
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# Set the IP and port
|
| 418 |
+
ip_address = "0.0.0.0" # Replace with your desired IP address
|
| 419 |
+
port_number = 7860 # Replace with your desired port number
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
demo.queue().launch(
|
| 423 |
+
share=True, debug=True, server_name=ip_address, server_port=port_number
|
| 424 |
+
)
|
data/demo/cyber_girl.png
ADDED
|
data/demo/video1.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad8eb17005da389731d2a04d61a39166b753270a893e04ab3801b798fe04441d
|
| 3 |
+
size 5411952
|
data/images/seaside4.jpeg
ADDED
|
data/images/yongen.jpeg
ADDED
|
gradio_text2video.py
ADDED
|
@@ -0,0 +1,949 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import copy
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import logging
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
+
from pprint import pprint
|
| 8 |
+
import random
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from argparse import Namespace
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
from omegaconf import OmegaConf, SCMode
|
| 14 |
+
import torch
|
| 15 |
+
from einops import rearrange, repeat
|
| 16 |
+
import cv2
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from diffusers.models.autoencoder_kl import AutoencoderKL
|
| 19 |
+
|
| 20 |
+
from mmcm.utils.load_util import load_pyhon_obj
|
| 21 |
+
from mmcm.utils.seed_util import set_all_seed
|
| 22 |
+
from mmcm.utils.signature import get_signature_of_string
|
| 23 |
+
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
|
| 24 |
+
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
|
| 25 |
+
from mmcm.utils.str_util import clean_str_for_save
|
| 26 |
+
from mmcm.vision.data.video_dataset import DecordVideoDataset
|
| 27 |
+
from musev.auto_prompt.util import generate_prompts
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
|
| 31 |
+
from musev.models.referencenet_loader import load_referencenet_by_name
|
| 32 |
+
from musev.models.ip_adapter_loader import (
|
| 33 |
+
load_ip_adapter_vision_clip_encoder_by_name,
|
| 34 |
+
load_vision_clip_encoder_by_name,
|
| 35 |
+
load_ip_adapter_image_proj_by_name,
|
| 36 |
+
)
|
| 37 |
+
from musev.models.ip_adapter_face_loader import (
|
| 38 |
+
load_ip_adapter_face_extractor_and_proj_by_name,
|
| 39 |
+
)
|
| 40 |
+
from musev.pipelines.pipeline_controlnet_predictor import (
|
| 41 |
+
DiffusersPipelinePredictor,
|
| 42 |
+
)
|
| 43 |
+
from musev.models.referencenet import ReferenceNet2D
|
| 44 |
+
from musev.models.unet_loader import load_unet_by_name
|
| 45 |
+
from musev.utils.util import save_videos_grid_with_opencv
|
| 46 |
+
from musev import logger
|
| 47 |
+
|
| 48 |
+
use_v2v_predictor = False
|
| 49 |
+
if use_v2v_predictor:
|
| 50 |
+
from gradio_video2video import sd_predictor as video_sd_predictor
|
| 51 |
+
|
| 52 |
+
logger.setLevel("INFO")
|
| 53 |
+
|
| 54 |
+
file_dir = os.path.dirname(__file__)
|
| 55 |
+
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "./")
|
| 56 |
+
DATA_DIR = os.path.join(PROJECT_DIR, "data")
|
| 57 |
+
CACHE_PATH = "./t2v_input_image"
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# TODO:use group to group arguments
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
args_dict = {
|
| 64 |
+
"add_static_video_prompt": False,
|
| 65 |
+
"context_batch_size": 1,
|
| 66 |
+
"context_frames": 12,
|
| 67 |
+
"context_overlap": 4,
|
| 68 |
+
"context_schedule": "uniform_v2",
|
| 69 |
+
"context_stride": 1,
|
| 70 |
+
"cross_attention_dim": 768,
|
| 71 |
+
"face_image_path": None,
|
| 72 |
+
"facein_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/facein.py"),
|
| 73 |
+
"facein_model_name": None,
|
| 74 |
+
"facein_scale": 1.0,
|
| 75 |
+
"fix_condition_images": False,
|
| 76 |
+
"fixed_ip_adapter_image": True,
|
| 77 |
+
"fixed_refer_face_image": True,
|
| 78 |
+
"fixed_refer_image": True,
|
| 79 |
+
"fps": 4,
|
| 80 |
+
"guidance_scale": 7.5,
|
| 81 |
+
"height": None,
|
| 82 |
+
"img_length_ratio": 1.0,
|
| 83 |
+
"img_weight": 0.001,
|
| 84 |
+
"interpolation_factor": 1,
|
| 85 |
+
"ip_adapter_face_model_cfg_path": os.path.join(
|
| 86 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
| 87 |
+
),
|
| 88 |
+
"ip_adapter_face_model_name": None,
|
| 89 |
+
"ip_adapter_face_scale": 1.0,
|
| 90 |
+
"ip_adapter_model_cfg_path": os.path.join(
|
| 91 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
| 92 |
+
),
|
| 93 |
+
"ip_adapter_model_name": "musev_referencenet",
|
| 94 |
+
"ip_adapter_scale": 1.0,
|
| 95 |
+
"ipadapter_image_path": None,
|
| 96 |
+
"lcm_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/lcm_model.py"),
|
| 97 |
+
"lcm_model_name": None,
|
| 98 |
+
"log_level": "INFO",
|
| 99 |
+
"motion_speed": 8.0,
|
| 100 |
+
"n_batch": 1,
|
| 101 |
+
"n_cols": 3,
|
| 102 |
+
"n_repeat": 1,
|
| 103 |
+
"n_vision_condition": 1,
|
| 104 |
+
"need_hist_match": False,
|
| 105 |
+
"need_img_based_video_noise": True,
|
| 106 |
+
"need_redraw": False,
|
| 107 |
+
"negative_prompt": "V2",
|
| 108 |
+
"negprompt_cfg_path": os.path.join(
|
| 109 |
+
PROJECT_DIR, "./configs/model/negative_prompt.py"
|
| 110 |
+
),
|
| 111 |
+
"noise_type": "video_fusion",
|
| 112 |
+
"num_inference_steps": 30,
|
| 113 |
+
"output_dir": "./results/",
|
| 114 |
+
"overwrite": False,
|
| 115 |
+
"prompt_only_use_image_prompt": False,
|
| 116 |
+
"record_mid_video_latents": False,
|
| 117 |
+
"record_mid_video_noises": False,
|
| 118 |
+
"redraw_condition_image": False,
|
| 119 |
+
"redraw_condition_image_with_facein": True,
|
| 120 |
+
"redraw_condition_image_with_ip_adapter_face": True,
|
| 121 |
+
"redraw_condition_image_with_ipdapter": True,
|
| 122 |
+
"redraw_condition_image_with_referencenet": True,
|
| 123 |
+
"referencenet_image_path": None,
|
| 124 |
+
"referencenet_model_cfg_path": os.path.join(
|
| 125 |
+
PROJECT_DIR, "./configs/model/referencenet.py"
|
| 126 |
+
),
|
| 127 |
+
"referencenet_model_name": "musev_referencenet",
|
| 128 |
+
"save_filetype": "mp4",
|
| 129 |
+
"save_images": False,
|
| 130 |
+
"sd_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/T2I_all_model.py"),
|
| 131 |
+
"sd_model_name": "majicmixRealv6Fp16",
|
| 132 |
+
"seed": None,
|
| 133 |
+
"strength": 0.8,
|
| 134 |
+
"target_datas": "boy_dance2",
|
| 135 |
+
"test_data_path": os.path.join(
|
| 136 |
+
PROJECT_DIR, "./configs/infer/testcase_video_famous.yaml"
|
| 137 |
+
),
|
| 138 |
+
"time_size": 24,
|
| 139 |
+
"unet_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/motion_model.py"),
|
| 140 |
+
"unet_model_name": "musev_referencenet",
|
| 141 |
+
"use_condition_image": True,
|
| 142 |
+
"use_video_redraw": True,
|
| 143 |
+
"vae_model_path": os.path.join(PROJECT_DIR, "./checkpoints/vae/sd-vae-ft-mse"),
|
| 144 |
+
"video_guidance_scale": 3.5,
|
| 145 |
+
"video_guidance_scale_end": None,
|
| 146 |
+
"video_guidance_scale_method": "linear",
|
| 147 |
+
"video_negative_prompt": "V2",
|
| 148 |
+
"video_num_inference_steps": 10,
|
| 149 |
+
"video_overlap": 1,
|
| 150 |
+
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
|
| 151 |
+
"vision_clip_model_path": os.path.join(
|
| 152 |
+
PROJECT_DIR, "./checkpoints/IP-Adapter/models/image_encoder"
|
| 153 |
+
),
|
| 154 |
+
"w_ind_noise": 0.5,
|
| 155 |
+
"width": None,
|
| 156 |
+
"write_info": False,
|
| 157 |
+
}
|
| 158 |
+
args = Namespace(**args_dict)
|
| 159 |
+
print("args")
|
| 160 |
+
pprint(args)
|
| 161 |
+
print("\n")
|
| 162 |
+
|
| 163 |
+
logger.setLevel(args.log_level)
|
| 164 |
+
overwrite = args.overwrite
|
| 165 |
+
cross_attention_dim = args.cross_attention_dim
|
| 166 |
+
time_size = args.time_size # 一次视频生成的帧数
|
| 167 |
+
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
|
| 168 |
+
fps = args.fps
|
| 169 |
+
# need_redraw = args.need_redraw # 视频重绘视频使用视频网络
|
| 170 |
+
# use_video_redraw = args.use_video_redraw # 视频重绘视频使用视频网络
|
| 171 |
+
fix_condition_images = args.fix_condition_images
|
| 172 |
+
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
|
| 173 |
+
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
|
| 174 |
+
need_img_based_video_noise = (
|
| 175 |
+
args.need_img_based_video_noise
|
| 176 |
+
) # 视频加噪过程中是否使用首帧 condition_images
|
| 177 |
+
img_weight = args.img_weight
|
| 178 |
+
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
|
| 179 |
+
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
|
| 180 |
+
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
|
| 181 |
+
n_cols = args.n_cols
|
| 182 |
+
noise_type = args.noise_type
|
| 183 |
+
strength = args.strength # 首帧重绘程度参数
|
| 184 |
+
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
|
| 185 |
+
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
|
| 186 |
+
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
|
| 187 |
+
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
|
| 188 |
+
seed = args.seed
|
| 189 |
+
save_filetype = args.save_filetype
|
| 190 |
+
save_images = args.save_images
|
| 191 |
+
sd_model_cfg_path = args.sd_model_cfg_path
|
| 192 |
+
sd_model_name = (
|
| 193 |
+
args.sd_model_name
|
| 194 |
+
if args.sd_model_name in ["all", "None"]
|
| 195 |
+
else args.sd_model_name.split(",")
|
| 196 |
+
)
|
| 197 |
+
unet_model_cfg_path = args.unet_model_cfg_path
|
| 198 |
+
unet_model_name = args.unet_model_name
|
| 199 |
+
test_data_path = args.test_data_path
|
| 200 |
+
target_datas = (
|
| 201 |
+
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
|
| 202 |
+
)
|
| 203 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 204 |
+
torch_dtype = torch.float16
|
| 205 |
+
negprompt_cfg_path = args.negprompt_cfg_path
|
| 206 |
+
video_negative_prompt = args.video_negative_prompt
|
| 207 |
+
negative_prompt = args.negative_prompt
|
| 208 |
+
motion_speed = args.motion_speed
|
| 209 |
+
need_hist_match = args.need_hist_match
|
| 210 |
+
video_guidance_scale_end = args.video_guidance_scale_end
|
| 211 |
+
video_guidance_scale_method = args.video_guidance_scale_method
|
| 212 |
+
add_static_video_prompt = args.add_static_video_prompt
|
| 213 |
+
n_vision_condition = args.n_vision_condition
|
| 214 |
+
lcm_model_cfg_path = args.lcm_model_cfg_path
|
| 215 |
+
lcm_model_name = args.lcm_model_name
|
| 216 |
+
referencenet_model_cfg_path = args.referencenet_model_cfg_path
|
| 217 |
+
referencenet_model_name = args.referencenet_model_name
|
| 218 |
+
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
|
| 219 |
+
ip_adapter_model_name = args.ip_adapter_model_name
|
| 220 |
+
vision_clip_model_path = args.vision_clip_model_path
|
| 221 |
+
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
|
| 222 |
+
facein_model_cfg_path = args.facein_model_cfg_path
|
| 223 |
+
facein_model_name = args.facein_model_name
|
| 224 |
+
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
|
| 225 |
+
ip_adapter_face_model_name = args.ip_adapter_face_model_name
|
| 226 |
+
|
| 227 |
+
fixed_refer_image = args.fixed_refer_image
|
| 228 |
+
fixed_ip_adapter_image = args.fixed_ip_adapter_image
|
| 229 |
+
fixed_refer_face_image = args.fixed_refer_face_image
|
| 230 |
+
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
|
| 231 |
+
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
|
| 232 |
+
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
|
| 233 |
+
redraw_condition_image_with_ip_adapter_face = (
|
| 234 |
+
args.redraw_condition_image_with_ip_adapter_face
|
| 235 |
+
)
|
| 236 |
+
w_ind_noise = args.w_ind_noise
|
| 237 |
+
ip_adapter_scale = args.ip_adapter_scale
|
| 238 |
+
facein_scale = args.facein_scale
|
| 239 |
+
ip_adapter_face_scale = args.ip_adapter_face_scale
|
| 240 |
+
face_image_path = args.face_image_path
|
| 241 |
+
ipadapter_image_path = args.ipadapter_image_path
|
| 242 |
+
referencenet_image_path = args.referencenet_image_path
|
| 243 |
+
vae_model_path = args.vae_model_path
|
| 244 |
+
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
|
| 245 |
+
# serial_denoise parameter start
|
| 246 |
+
record_mid_video_noises = args.record_mid_video_noises
|
| 247 |
+
record_mid_video_latents = args.record_mid_video_latents
|
| 248 |
+
video_overlap = args.video_overlap
|
| 249 |
+
# serial_denoise parameter end
|
| 250 |
+
# parallel_denoise parameter start
|
| 251 |
+
context_schedule = args.context_schedule
|
| 252 |
+
context_frames = args.context_frames
|
| 253 |
+
context_stride = args.context_stride
|
| 254 |
+
context_overlap = args.context_overlap
|
| 255 |
+
context_batch_size = args.context_batch_size
|
| 256 |
+
interpolation_factor = args.interpolation_factor
|
| 257 |
+
n_repeat = args.n_repeat
|
| 258 |
+
|
| 259 |
+
# parallel_denoise parameter end
|
| 260 |
+
|
| 261 |
+
b = 1
|
| 262 |
+
negative_embedding = [
|
| 263 |
+
[os.path.join(PROJECT_DIR, "./checkpoints/embedding/badhandv4.pt"), "badhandv4"],
|
| 264 |
+
[
|
| 265 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/ng_deepnegative_v1_75t.pt"),
|
| 266 |
+
"ng_deepnegative_v1_75t",
|
| 267 |
+
],
|
| 268 |
+
[
|
| 269 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/EasyNegativeV2.safetensors"),
|
| 270 |
+
"EasyNegativeV2",
|
| 271 |
+
],
|
| 272 |
+
[
|
| 273 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/bad_prompt_version2-neg.pt"),
|
| 274 |
+
"bad_prompt_version2-neg",
|
| 275 |
+
],
|
| 276 |
+
]
|
| 277 |
+
prefix_prompt = ""
|
| 278 |
+
suffix_prompt = ", beautiful, masterpiece, best quality"
|
| 279 |
+
suffix_prompt = ""
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# sd model parameters
|
| 283 |
+
|
| 284 |
+
if sd_model_name != "None":
|
| 285 |
+
# 使用 cfg_path 里的sd_model_path
|
| 286 |
+
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
|
| 287 |
+
sd_model_params_dict = {
|
| 288 |
+
k: v
|
| 289 |
+
for k, v in sd_model_params_dict_src.items()
|
| 290 |
+
if sd_model_name == "all" or k in sd_model_name
|
| 291 |
+
}
|
| 292 |
+
else:
|
| 293 |
+
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
|
| 294 |
+
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
|
| 295 |
+
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
|
| 296 |
+
sd_model_params_dict_src = sd_model_params_dict
|
| 297 |
+
if len(sd_model_params_dict) == 0:
|
| 298 |
+
raise ValueError(
|
| 299 |
+
"has not target model, please set one of {}".format(
|
| 300 |
+
" ".join(list(sd_model_params_dict_src.keys()))
|
| 301 |
+
)
|
| 302 |
+
)
|
| 303 |
+
print("running model, T2I SD")
|
| 304 |
+
pprint(sd_model_params_dict)
|
| 305 |
+
|
| 306 |
+
# lcm
|
| 307 |
+
if lcm_model_name is not None:
|
| 308 |
+
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
|
| 309 |
+
print("lcm_model_params_dict_src")
|
| 310 |
+
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
|
| 311 |
+
else:
|
| 312 |
+
lcm_lora_dct = None
|
| 313 |
+
print("lcm: ", lcm_model_name, lcm_lora_dct)
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
# motion net parameters
|
| 317 |
+
if os.path.isdir(unet_model_cfg_path):
|
| 318 |
+
unet_model_path = unet_model_cfg_path
|
| 319 |
+
elif os.path.isfile(unet_model_cfg_path):
|
| 320 |
+
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
|
| 321 |
+
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
|
| 322 |
+
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
|
| 323 |
+
else:
|
| 324 |
+
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
|
| 325 |
+
print("unet: ", unet_model_name, unet_model_path)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
# referencenet
|
| 329 |
+
if referencenet_model_name is not None:
|
| 330 |
+
if os.path.isdir(referencenet_model_cfg_path):
|
| 331 |
+
referencenet_model_path = referencenet_model_cfg_path
|
| 332 |
+
elif os.path.isfile(referencenet_model_cfg_path):
|
| 333 |
+
referencenet_model_params_dict_src = load_pyhon_obj(
|
| 334 |
+
referencenet_model_cfg_path, "MODEL_CFG"
|
| 335 |
+
)
|
| 336 |
+
print(
|
| 337 |
+
"referencenet_model_params_dict_src",
|
| 338 |
+
referencenet_model_params_dict_src.keys(),
|
| 339 |
+
)
|
| 340 |
+
referencenet_model_path = referencenet_model_params_dict_src[
|
| 341 |
+
referencenet_model_name
|
| 342 |
+
]["net"]
|
| 343 |
+
else:
|
| 344 |
+
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
|
| 345 |
+
else:
|
| 346 |
+
referencenet_model_path = None
|
| 347 |
+
print("referencenet: ", referencenet_model_name, referencenet_model_path)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
# ip_adapter
|
| 351 |
+
if ip_adapter_model_name is not None:
|
| 352 |
+
ip_adapter_model_params_dict_src = load_pyhon_obj(
|
| 353 |
+
ip_adapter_model_cfg_path, "MODEL_CFG"
|
| 354 |
+
)
|
| 355 |
+
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
|
| 356 |
+
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
|
| 357 |
+
ip_adapter_model_name
|
| 358 |
+
]
|
| 359 |
+
else:
|
| 360 |
+
ip_adapter_model_params_dict = None
|
| 361 |
+
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
# facein
|
| 365 |
+
if facein_model_name is not None:
|
| 366 |
+
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
|
| 367 |
+
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
|
| 368 |
+
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
|
| 369 |
+
else:
|
| 370 |
+
facein_model_params_dict = None
|
| 371 |
+
print("facein: ", facein_model_name, facein_model_params_dict)
|
| 372 |
+
|
| 373 |
+
# ip_adapter_face
|
| 374 |
+
if ip_adapter_face_model_name is not None:
|
| 375 |
+
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
|
| 376 |
+
ip_adapter_face_model_cfg_path, "MODEL_CFG"
|
| 377 |
+
)
|
| 378 |
+
print(
|
| 379 |
+
"ip_adapter_face_model_params_dict_src",
|
| 380 |
+
ip_adapter_face_model_params_dict_src.keys(),
|
| 381 |
+
)
|
| 382 |
+
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
|
| 383 |
+
ip_adapter_face_model_name
|
| 384 |
+
]
|
| 385 |
+
else:
|
| 386 |
+
ip_adapter_face_model_params_dict = None
|
| 387 |
+
print(
|
| 388 |
+
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
# negative_prompt
|
| 393 |
+
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
|
| 394 |
+
name = negative_prompt[:n]
|
| 395 |
+
if cfg_path is not None and cfg_path not in ["None", "none"]:
|
| 396 |
+
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
|
| 397 |
+
negative_prompt = dct[negative_prompt]["prompt"]
|
| 398 |
+
|
| 399 |
+
return name, negative_prompt
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
negtive_prompt_length = 10
|
| 403 |
+
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
|
| 404 |
+
video_negative_prompt,
|
| 405 |
+
cfg_path=negprompt_cfg_path,
|
| 406 |
+
n=negtive_prompt_length,
|
| 407 |
+
)
|
| 408 |
+
negative_prompt_name, negative_prompt = get_negative_prompt(
|
| 409 |
+
negative_prompt,
|
| 410 |
+
cfg_path=negprompt_cfg_path,
|
| 411 |
+
n=negtive_prompt_length,
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
|
| 415 |
+
print("negprompt", negative_prompt_name, negative_prompt)
|
| 416 |
+
|
| 417 |
+
output_dir = args.output_dir
|
| 418 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
# test_data_parameters
|
| 422 |
+
def load_yaml(path):
|
| 423 |
+
tasks = OmegaConf.to_container(
|
| 424 |
+
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
|
| 425 |
+
)
|
| 426 |
+
return tasks
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# if test_data_path.endswith(".yaml"):
|
| 430 |
+
# test_datas_src = load_yaml(test_data_path)
|
| 431 |
+
# elif test_data_path.endswith(".csv"):
|
| 432 |
+
# test_datas_src = generate_tasks_from_table(test_data_path)
|
| 433 |
+
# else:
|
| 434 |
+
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
|
| 435 |
+
|
| 436 |
+
# test_datas = [
|
| 437 |
+
# test_data
|
| 438 |
+
# for test_data in test_datas_src
|
| 439 |
+
# if target_datas == "all" or test_data.get("name", None) in target_datas
|
| 440 |
+
# ]
|
| 441 |
+
|
| 442 |
+
# test_datas = fiss_tasks(test_datas)
|
| 443 |
+
# test_datas = generate_prompts(test_datas)
|
| 444 |
+
|
| 445 |
+
# n_test_datas = len(test_datas)
|
| 446 |
+
# if n_test_datas == 0:
|
| 447 |
+
# raise ValueError(
|
| 448 |
+
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
|
| 449 |
+
# " ".join(list(d.get("name", "None") for d in test_datas_src))
|
| 450 |
+
# )
|
| 451 |
+
# )
|
| 452 |
+
# print("n_test_datas", n_test_datas)
|
| 453 |
+
# # pprint(test_datas)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
def read_image(path):
|
| 457 |
+
name = os.path.basename(path).split(".")[0]
|
| 458 |
+
image = read_image_as_5d(path)
|
| 459 |
+
return image, name
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
def read_image_lst(path):
|
| 463 |
+
images_names = [read_image(x) for x in path]
|
| 464 |
+
images, names = zip(*images_names)
|
| 465 |
+
images = np.concatenate(images, axis=2)
|
| 466 |
+
name = "_".join(names)
|
| 467 |
+
return images, name
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def read_image_and_name(path):
|
| 471 |
+
if isinstance(path, str):
|
| 472 |
+
path = [path]
|
| 473 |
+
images, name = read_image_lst(path)
|
| 474 |
+
return images, name
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
if referencenet_model_name is not None and not use_v2v_predictor:
|
| 478 |
+
referencenet = load_referencenet_by_name(
|
| 479 |
+
model_name=referencenet_model_name,
|
| 480 |
+
# sd_model=sd_model_path,
|
| 481 |
+
# sd_model=os.path.join(PROJECT_DIR, "./checkpoints//Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
|
| 482 |
+
sd_referencenet_model=referencenet_model_path,
|
| 483 |
+
cross_attention_dim=cross_attention_dim,
|
| 484 |
+
)
|
| 485 |
+
else:
|
| 486 |
+
referencenet = None
|
| 487 |
+
referencenet_model_name = "no"
|
| 488 |
+
|
| 489 |
+
if vision_clip_extractor_class_name is not None and not use_v2v_predictor:
|
| 490 |
+
vision_clip_extractor = load_vision_clip_encoder_by_name(
|
| 491 |
+
ip_image_encoder=vision_clip_model_path,
|
| 492 |
+
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
|
| 493 |
+
)
|
| 494 |
+
logger.info(
|
| 495 |
+
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
|
| 496 |
+
)
|
| 497 |
+
else:
|
| 498 |
+
vision_clip_extractor = None
|
| 499 |
+
logger.info(f"vision_clip_extractor, None")
|
| 500 |
+
|
| 501 |
+
if ip_adapter_model_name is not None and not use_v2v_predictor:
|
| 502 |
+
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
|
| 503 |
+
model_name=ip_adapter_model_name,
|
| 504 |
+
ip_image_encoder=ip_adapter_model_params_dict.get(
|
| 505 |
+
"ip_image_encoder", vision_clip_model_path
|
| 506 |
+
),
|
| 507 |
+
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
|
| 508 |
+
cross_attention_dim=cross_attention_dim,
|
| 509 |
+
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
|
| 510 |
+
clip_extra_context_tokens=ip_adapter_model_params_dict[
|
| 511 |
+
"clip_extra_context_tokens"
|
| 512 |
+
],
|
| 513 |
+
ip_scale=ip_adapter_model_params_dict["ip_scale"],
|
| 514 |
+
device=device,
|
| 515 |
+
)
|
| 516 |
+
else:
|
| 517 |
+
ip_adapter_image_proj = None
|
| 518 |
+
ip_adapter_model_name = "no"
|
| 519 |
+
|
| 520 |
+
for model_name, sd_model_params in sd_model_params_dict.items():
|
| 521 |
+
lora_dict = sd_model_params.get("lora", None)
|
| 522 |
+
model_sex = sd_model_params.get("sex", None)
|
| 523 |
+
model_style = sd_model_params.get("style", None)
|
| 524 |
+
sd_model_path = sd_model_params["sd"]
|
| 525 |
+
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
|
| 526 |
+
|
| 527 |
+
unet = (
|
| 528 |
+
load_unet_by_name(
|
| 529 |
+
model_name=unet_model_name,
|
| 530 |
+
sd_unet_model=unet_model_path,
|
| 531 |
+
sd_model=sd_model_path,
|
| 532 |
+
# sd_model=os.path.join(PROJECT_DIR, "./checkpoints//Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
|
| 533 |
+
cross_attention_dim=cross_attention_dim,
|
| 534 |
+
need_t2i_facein=facein_model_name is not None,
|
| 535 |
+
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
|
| 536 |
+
strict=not (facein_model_name is not None),
|
| 537 |
+
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
|
| 538 |
+
)
|
| 539 |
+
if not use_v2v_predictor
|
| 540 |
+
else None
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
if facein_model_name is not None and not use_v2v_predictor:
|
| 544 |
+
(
|
| 545 |
+
face_emb_extractor,
|
| 546 |
+
facein_image_proj,
|
| 547 |
+
) = load_facein_extractor_and_proj_by_name(
|
| 548 |
+
model_name=facein_model_name,
|
| 549 |
+
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
|
| 550 |
+
ip_ckpt=facein_model_params_dict["ip_ckpt"],
|
| 551 |
+
cross_attention_dim=cross_attention_dim,
|
| 552 |
+
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
|
| 553 |
+
clip_extra_context_tokens=facein_model_params_dict[
|
| 554 |
+
"clip_extra_context_tokens"
|
| 555 |
+
],
|
| 556 |
+
ip_scale=facein_model_params_dict["ip_scale"],
|
| 557 |
+
device=device,
|
| 558 |
+
# facein目前没有参与unet中的训练,需要单独载入参数
|
| 559 |
+
unet=unet,
|
| 560 |
+
)
|
| 561 |
+
else:
|
| 562 |
+
face_emb_extractor = None
|
| 563 |
+
facein_image_proj = None
|
| 564 |
+
|
| 565 |
+
if ip_adapter_face_model_name is not None and not use_v2v_predictor:
|
| 566 |
+
(
|
| 567 |
+
ip_adapter_face_emb_extractor,
|
| 568 |
+
ip_adapter_face_image_proj,
|
| 569 |
+
) = load_ip_adapter_face_extractor_and_proj_by_name(
|
| 570 |
+
model_name=ip_adapter_face_model_name,
|
| 571 |
+
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
|
| 572 |
+
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
|
| 573 |
+
cross_attention_dim=cross_attention_dim,
|
| 574 |
+
clip_embeddings_dim=ip_adapter_face_model_params_dict[
|
| 575 |
+
"clip_embeddings_dim"
|
| 576 |
+
],
|
| 577 |
+
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
|
| 578 |
+
"clip_extra_context_tokens"
|
| 579 |
+
],
|
| 580 |
+
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
|
| 581 |
+
device=device,
|
| 582 |
+
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
|
| 583 |
+
)
|
| 584 |
+
else:
|
| 585 |
+
ip_adapter_face_emb_extractor = None
|
| 586 |
+
ip_adapter_face_image_proj = None
|
| 587 |
+
|
| 588 |
+
print("test_model_vae_model_path", test_model_vae_model_path)
|
| 589 |
+
|
| 590 |
+
sd_predictor = (
|
| 591 |
+
DiffusersPipelinePredictor(
|
| 592 |
+
sd_model_path=sd_model_path,
|
| 593 |
+
unet=unet,
|
| 594 |
+
lora_dict=lora_dict,
|
| 595 |
+
lcm_lora_dct=lcm_lora_dct,
|
| 596 |
+
device=device,
|
| 597 |
+
dtype=torch_dtype,
|
| 598 |
+
negative_embedding=negative_embedding,
|
| 599 |
+
referencenet=referencenet,
|
| 600 |
+
ip_adapter_image_proj=ip_adapter_image_proj,
|
| 601 |
+
vision_clip_extractor=vision_clip_extractor,
|
| 602 |
+
facein_image_proj=facein_image_proj,
|
| 603 |
+
face_emb_extractor=face_emb_extractor,
|
| 604 |
+
vae_model=test_model_vae_model_path,
|
| 605 |
+
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
|
| 606 |
+
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
|
| 607 |
+
)
|
| 608 |
+
if not use_v2v_predictor
|
| 609 |
+
else video_sd_predictor
|
| 610 |
+
)
|
| 611 |
+
if use_v2v_predictor:
|
| 612 |
+
print(
|
| 613 |
+
"text2video use video_sd_predictor, sd_predictor type is ",
|
| 614 |
+
type(sd_predictor),
|
| 615 |
+
)
|
| 616 |
+
logger.debug(f"load sd_predictor"),
|
| 617 |
+
|
| 618 |
+
# TODO:这里修改为gradio
|
| 619 |
+
import cuid
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
def generate_cuid():
|
| 623 |
+
return cuid.cuid()
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
def online_t2v_inference(
|
| 627 |
+
prompt,
|
| 628 |
+
image_np,
|
| 629 |
+
seed,
|
| 630 |
+
fps,
|
| 631 |
+
w,
|
| 632 |
+
h,
|
| 633 |
+
video_len,
|
| 634 |
+
img_edge_ratio: float = 1.0,
|
| 635 |
+
progress=gr.Progress(track_tqdm=True),
|
| 636 |
+
):
|
| 637 |
+
progress(0, desc="Starting...")
|
| 638 |
+
# Save the uploaded image to a specified path
|
| 639 |
+
if not os.path.exists(CACHE_PATH):
|
| 640 |
+
os.makedirs(CACHE_PATH)
|
| 641 |
+
image_cuid = generate_cuid()
|
| 642 |
+
|
| 643 |
+
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
|
| 644 |
+
image = Image.fromarray(image_np)
|
| 645 |
+
image.save(image_path)
|
| 646 |
+
|
| 647 |
+
time_size = int(video_len)
|
| 648 |
+
test_data = {
|
| 649 |
+
"name": image_cuid,
|
| 650 |
+
"prompt": prompt,
|
| 651 |
+
# 'video_path': None,
|
| 652 |
+
"condition_images": image_path,
|
| 653 |
+
"refer_image": image_path,
|
| 654 |
+
"ipadapter_image": image_path,
|
| 655 |
+
"height": h,
|
| 656 |
+
"width": w,
|
| 657 |
+
"img_length_ratio": img_edge_ratio,
|
| 658 |
+
# 'style': 'anime',
|
| 659 |
+
# 'sex': 'female'
|
| 660 |
+
}
|
| 661 |
+
batch = []
|
| 662 |
+
texts = []
|
| 663 |
+
print("\n test_data", test_data, model_name)
|
| 664 |
+
test_data_name = test_data.get("name", test_data)
|
| 665 |
+
prompt = test_data["prompt"]
|
| 666 |
+
prompt = prefix_prompt + prompt + suffix_prompt
|
| 667 |
+
prompt_hash = get_signature_of_string(prompt, length=5)
|
| 668 |
+
test_data["prompt_hash"] = prompt_hash
|
| 669 |
+
test_data_height = test_data.get("height", height)
|
| 670 |
+
test_data_width = test_data.get("width", width)
|
| 671 |
+
test_data_condition_images_path = test_data.get("condition_images", None)
|
| 672 |
+
test_data_condition_images_index = test_data.get("condition_images_index", None)
|
| 673 |
+
test_data_redraw_condition_image = test_data.get(
|
| 674 |
+
"redraw_condition_image", redraw_condition_image
|
| 675 |
+
)
|
| 676 |
+
# read condition_image
|
| 677 |
+
if (
|
| 678 |
+
test_data_condition_images_path is not None
|
| 679 |
+
and use_condition_image
|
| 680 |
+
and (
|
| 681 |
+
isinstance(test_data_condition_images_path, list)
|
| 682 |
+
or (
|
| 683 |
+
isinstance(test_data_condition_images_path, str)
|
| 684 |
+
and is_image(test_data_condition_images_path)
|
| 685 |
+
)
|
| 686 |
+
)
|
| 687 |
+
):
|
| 688 |
+
(
|
| 689 |
+
test_data_condition_images,
|
| 690 |
+
test_data_condition_images_name,
|
| 691 |
+
) = read_image_and_name(test_data_condition_images_path)
|
| 692 |
+
condition_image_height = test_data_condition_images.shape[3]
|
| 693 |
+
condition_image_width = test_data_condition_images.shape[4]
|
| 694 |
+
logger.debug(
|
| 695 |
+
f"test_data_condition_images use {test_data_condition_images_path}"
|
| 696 |
+
)
|
| 697 |
+
else:
|
| 698 |
+
test_data_condition_images = None
|
| 699 |
+
test_data_condition_images_name = "no"
|
| 700 |
+
condition_image_height = None
|
| 701 |
+
condition_image_width = None
|
| 702 |
+
logger.debug(f"test_data_condition_images is None")
|
| 703 |
+
|
| 704 |
+
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
|
| 705 |
+
if test_data_height in [None, -1]:
|
| 706 |
+
test_data_height = condition_image_height
|
| 707 |
+
|
| 708 |
+
if test_data_width in [None, -1]:
|
| 709 |
+
test_data_width = condition_image_width
|
| 710 |
+
|
| 711 |
+
test_data_img_length_ratio = float(
|
| 712 |
+
test_data.get("img_length_ratio", img_length_ratio)
|
| 713 |
+
)
|
| 714 |
+
# 为了和video2video保持对齐,使用64而不是8作为宽、高最小粒度
|
| 715 |
+
# test_data_height = int(test_data_height * test_data_img_length_ratio // 8 * 8)
|
| 716 |
+
# test_data_width = int(test_data_width * test_data_img_length_ratio // 8 * 8)
|
| 717 |
+
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
|
| 718 |
+
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
|
| 719 |
+
pprint(test_data)
|
| 720 |
+
print(f"test_data_height={test_data_height}")
|
| 721 |
+
print(f"test_data_width={test_data_width}")
|
| 722 |
+
# continue
|
| 723 |
+
test_data_style = test_data.get("style", None)
|
| 724 |
+
test_data_sex = test_data.get("sex", None)
|
| 725 |
+
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
|
| 726 |
+
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
|
| 727 |
+
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
|
| 728 |
+
test_data_img_weight = float(test_data.get("img_weight", img_weight))
|
| 729 |
+
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
|
| 730 |
+
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
|
| 731 |
+
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
|
| 732 |
+
test_data_ipadapter_image_path = test_data.get(
|
| 733 |
+
"ipadapter_image", ipadapter_image_path
|
| 734 |
+
)
|
| 735 |
+
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
|
| 736 |
+
|
| 737 |
+
if negprompt_cfg_path is not None:
|
| 738 |
+
if "video_negative_prompt" in test_data:
|
| 739 |
+
(
|
| 740 |
+
test_data_video_negative_prompt_name,
|
| 741 |
+
test_data_video_negative_prompt,
|
| 742 |
+
) = get_negative_prompt(
|
| 743 |
+
test_data.get(
|
| 744 |
+
"video_negative_prompt",
|
| 745 |
+
),
|
| 746 |
+
cfg_path=negprompt_cfg_path,
|
| 747 |
+
n=negtive_prompt_length,
|
| 748 |
+
)
|
| 749 |
+
else:
|
| 750 |
+
test_data_video_negative_prompt_name = video_negative_prompt_name
|
| 751 |
+
test_data_video_negative_prompt = video_negative_prompt
|
| 752 |
+
if "negative_prompt" in test_data:
|
| 753 |
+
(
|
| 754 |
+
test_data_negative_prompt_name,
|
| 755 |
+
test_data_negative_prompt,
|
| 756 |
+
) = get_negative_prompt(
|
| 757 |
+
test_data.get(
|
| 758 |
+
"negative_prompt",
|
| 759 |
+
),
|
| 760 |
+
cfg_path=negprompt_cfg_path,
|
| 761 |
+
n=negtive_prompt_length,
|
| 762 |
+
)
|
| 763 |
+
else:
|
| 764 |
+
test_data_negative_prompt_name = negative_prompt_name
|
| 765 |
+
test_data_negative_prompt = negative_prompt
|
| 766 |
+
else:
|
| 767 |
+
test_data_video_negative_prompt = test_data.get(
|
| 768 |
+
"video_negative_prompt", video_negative_prompt
|
| 769 |
+
)
|
| 770 |
+
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
|
| 771 |
+
:negtive_prompt_length
|
| 772 |
+
]
|
| 773 |
+
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
|
| 774 |
+
test_data_negative_prompt_name = test_data_negative_prompt[
|
| 775 |
+
:negtive_prompt_length
|
| 776 |
+
]
|
| 777 |
+
|
| 778 |
+
# 准备 test_data_refer_image
|
| 779 |
+
if referencenet is not None:
|
| 780 |
+
if test_data_refer_image_path is None:
|
| 781 |
+
test_data_refer_image = test_data_condition_images
|
| 782 |
+
test_data_refer_image_name = test_data_condition_images_name
|
| 783 |
+
logger.debug(f"test_data_refer_image use test_data_condition_images")
|
| 784 |
+
else:
|
| 785 |
+
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
|
| 786 |
+
test_data_refer_image_path
|
| 787 |
+
)
|
| 788 |
+
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
|
| 789 |
+
else:
|
| 790 |
+
test_data_refer_image = None
|
| 791 |
+
test_data_refer_image_name = "no"
|
| 792 |
+
logger.debug(f"test_data_refer_image is None")
|
| 793 |
+
|
| 794 |
+
# 准备 test_data_ipadapter_image
|
| 795 |
+
if vision_clip_extractor is not None:
|
| 796 |
+
if test_data_ipadapter_image_path is None:
|
| 797 |
+
test_data_ipadapter_image = test_data_condition_images
|
| 798 |
+
test_data_ipadapter_image_name = test_data_condition_images_name
|
| 799 |
+
|
| 800 |
+
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
|
| 801 |
+
else:
|
| 802 |
+
(
|
| 803 |
+
test_data_ipadapter_image,
|
| 804 |
+
test_data_ipadapter_image_name,
|
| 805 |
+
) = read_image_and_name(test_data_ipadapter_image_path)
|
| 806 |
+
logger.debug(
|
| 807 |
+
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
|
| 808 |
+
)
|
| 809 |
+
else:
|
| 810 |
+
test_data_ipadapter_image = None
|
| 811 |
+
test_data_ipadapter_image_name = "no"
|
| 812 |
+
logger.debug(f"test_data_ipadapter_image is None")
|
| 813 |
+
|
| 814 |
+
# 准备 test_data_refer_face_image
|
| 815 |
+
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
|
| 816 |
+
if test_data_refer_face_image_path is None:
|
| 817 |
+
test_data_refer_face_image = test_data_condition_images
|
| 818 |
+
test_data_refer_face_image_name = test_data_condition_images_name
|
| 819 |
+
|
| 820 |
+
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
|
| 821 |
+
else:
|
| 822 |
+
(
|
| 823 |
+
test_data_refer_face_image,
|
| 824 |
+
test_data_refer_face_image_name,
|
| 825 |
+
) = read_image_and_name(test_data_refer_face_image_path)
|
| 826 |
+
logger.debug(
|
| 827 |
+
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
|
| 828 |
+
)
|
| 829 |
+
else:
|
| 830 |
+
test_data_refer_face_image = None
|
| 831 |
+
test_data_refer_face_image_name = "no"
|
| 832 |
+
logger.debug(f"test_data_refer_face_image is None")
|
| 833 |
+
|
| 834 |
+
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
|
| 835 |
+
# if (
|
| 836 |
+
# model_sex is not None
|
| 837 |
+
# and test_data_sex is not None
|
| 838 |
+
# and model_sex != test_data_sex
|
| 839 |
+
# ) or (
|
| 840 |
+
# model_style is not None
|
| 841 |
+
# and test_data_style is not None
|
| 842 |
+
# and model_style != test_data_style
|
| 843 |
+
# ):
|
| 844 |
+
# print("model doesnt match test_data")
|
| 845 |
+
# print("model name: ", model_name)
|
| 846 |
+
# print("test_data: ", test_data)
|
| 847 |
+
# continue
|
| 848 |
+
if add_static_video_prompt:
|
| 849 |
+
test_data_video_negative_prompt = "static video, {}".format(
|
| 850 |
+
test_data_video_negative_prompt
|
| 851 |
+
)
|
| 852 |
+
for i_num in range(n_repeat):
|
| 853 |
+
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
|
| 854 |
+
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
|
| 855 |
+
save_file_name = (
|
| 856 |
+
f"m={model_name}_rm={referencenet_model_name}_case={test_data_name}"
|
| 857 |
+
f"_w={test_data_width}_h={test_data_height}_t={time_size}_nb={n_batch}"
|
| 858 |
+
f"_s={test_data_seed}_p={prompt_hash}"
|
| 859 |
+
f"_w={test_data_img_weight}"
|
| 860 |
+
f"_ms={test_data_motion_speed}"
|
| 861 |
+
f"_s={strength}_g={video_guidance_scale}"
|
| 862 |
+
f"_c-i={test_data_condition_images_name[:5]}_r-c={test_data_redraw_condition_image}"
|
| 863 |
+
f"_w={test_data_w_ind_noise}_{test_data_video_negative_prompt_name}"
|
| 864 |
+
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
save_file_name = clean_str_for_save(save_file_name)
|
| 868 |
+
output_path = os.path.join(
|
| 869 |
+
output_dir,
|
| 870 |
+
f"{save_file_name}.{save_filetype}",
|
| 871 |
+
)
|
| 872 |
+
if os.path.exists(output_path) and not overwrite:
|
| 873 |
+
print("existed", output_path)
|
| 874 |
+
continue
|
| 875 |
+
|
| 876 |
+
print("output_path", output_path)
|
| 877 |
+
out_videos = sd_predictor.run_pipe_text2video(
|
| 878 |
+
video_length=time_size,
|
| 879 |
+
prompt=prompt,
|
| 880 |
+
width=test_data_width,
|
| 881 |
+
height=test_data_height,
|
| 882 |
+
generator=gpu_generator,
|
| 883 |
+
noise_type=noise_type,
|
| 884 |
+
negative_prompt=test_data_negative_prompt,
|
| 885 |
+
video_negative_prompt=test_data_video_negative_prompt,
|
| 886 |
+
max_batch_num=n_batch,
|
| 887 |
+
strength=strength,
|
| 888 |
+
need_img_based_video_noise=need_img_based_video_noise,
|
| 889 |
+
video_num_inference_steps=video_num_inference_steps,
|
| 890 |
+
condition_images=test_data_condition_images,
|
| 891 |
+
fix_condition_images=fix_condition_images,
|
| 892 |
+
video_guidance_scale=video_guidance_scale,
|
| 893 |
+
guidance_scale=guidance_scale,
|
| 894 |
+
num_inference_steps=num_inference_steps,
|
| 895 |
+
redraw_condition_image=test_data_redraw_condition_image,
|
| 896 |
+
img_weight=test_data_img_weight,
|
| 897 |
+
w_ind_noise=test_data_w_ind_noise,
|
| 898 |
+
n_vision_condition=n_vision_condition,
|
| 899 |
+
motion_speed=test_data_motion_speed,
|
| 900 |
+
need_hist_match=need_hist_match,
|
| 901 |
+
video_guidance_scale_end=video_guidance_scale_end,
|
| 902 |
+
video_guidance_scale_method=video_guidance_scale_method,
|
| 903 |
+
vision_condition_latent_index=test_data_condition_images_index,
|
| 904 |
+
refer_image=test_data_refer_image,
|
| 905 |
+
fixed_refer_image=fixed_refer_image,
|
| 906 |
+
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
|
| 907 |
+
ip_adapter_image=test_data_ipadapter_image,
|
| 908 |
+
refer_face_image=test_data_refer_face_image,
|
| 909 |
+
fixed_refer_face_image=fixed_refer_face_image,
|
| 910 |
+
facein_scale=facein_scale,
|
| 911 |
+
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
|
| 912 |
+
ip_adapter_face_scale=ip_adapter_face_scale,
|
| 913 |
+
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
|
| 914 |
+
fixed_ip_adapter_image=fixed_ip_adapter_image,
|
| 915 |
+
ip_adapter_scale=ip_adapter_scale,
|
| 916 |
+
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
|
| 917 |
+
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
|
| 918 |
+
# need_redraw=need_redraw,
|
| 919 |
+
# use_video_redraw=use_video_redraw,
|
| 920 |
+
# serial_denoise parameter start
|
| 921 |
+
record_mid_video_noises=record_mid_video_noises,
|
| 922 |
+
record_mid_video_latents=record_mid_video_latents,
|
| 923 |
+
video_overlap=video_overlap,
|
| 924 |
+
# serial_denoise parameter end
|
| 925 |
+
# parallel_denoise parameter start
|
| 926 |
+
context_schedule=context_schedule,
|
| 927 |
+
context_frames=context_frames,
|
| 928 |
+
context_stride=context_stride,
|
| 929 |
+
context_overlap=context_overlap,
|
| 930 |
+
context_batch_size=context_batch_size,
|
| 931 |
+
interpolation_factor=interpolation_factor,
|
| 932 |
+
# parallel_denoise parameter end
|
| 933 |
+
)
|
| 934 |
+
out = np.concatenate([out_videos], axis=0)
|
| 935 |
+
texts = ["out"]
|
| 936 |
+
save_videos_grid_with_opencv(
|
| 937 |
+
out,
|
| 938 |
+
output_path,
|
| 939 |
+
texts=texts,
|
| 940 |
+
fps=fps,
|
| 941 |
+
tensor_order="b c t h w",
|
| 942 |
+
n_cols=n_cols,
|
| 943 |
+
write_info=args.write_info,
|
| 944 |
+
save_filetype=save_filetype,
|
| 945 |
+
save_images=save_images,
|
| 946 |
+
)
|
| 947 |
+
print("Save to", output_path)
|
| 948 |
+
print("\n" * 2)
|
| 949 |
+
return output_path
|
gradio_video2video.py
ADDED
|
@@ -0,0 +1,1039 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import copy
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import logging
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
+
from pprint import pprint
|
| 8 |
+
import random
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
from omegaconf import OmegaConf, SCMode
|
| 13 |
+
import torch
|
| 14 |
+
from einops import rearrange, repeat
|
| 15 |
+
import cv2
|
| 16 |
+
from PIL import Image
|
| 17 |
+
from diffusers.models.autoencoder_kl import AutoencoderKL
|
| 18 |
+
|
| 19 |
+
from mmcm.utils.load_util import load_pyhon_obj
|
| 20 |
+
from mmcm.utils.seed_util import set_all_seed
|
| 21 |
+
from mmcm.utils.signature import get_signature_of_string
|
| 22 |
+
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
|
| 23 |
+
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
|
| 24 |
+
from mmcm.utils.str_util import clean_str_for_save
|
| 25 |
+
from mmcm.vision.data.video_dataset import DecordVideoDataset
|
| 26 |
+
from musev.auto_prompt.util import generate_prompts
|
| 27 |
+
|
| 28 |
+
from musev.models.controlnet import PoseGuider
|
| 29 |
+
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
|
| 30 |
+
from musev.models.referencenet_loader import load_referencenet_by_name
|
| 31 |
+
from musev.models.ip_adapter_loader import (
|
| 32 |
+
load_ip_adapter_vision_clip_encoder_by_name,
|
| 33 |
+
load_vision_clip_encoder_by_name,
|
| 34 |
+
load_ip_adapter_image_proj_by_name,
|
| 35 |
+
)
|
| 36 |
+
from musev.models.ip_adapter_face_loader import (
|
| 37 |
+
load_ip_adapter_face_extractor_and_proj_by_name,
|
| 38 |
+
)
|
| 39 |
+
from musev.pipelines.pipeline_controlnet_predictor import (
|
| 40 |
+
DiffusersPipelinePredictor,
|
| 41 |
+
)
|
| 42 |
+
from musev.models.referencenet import ReferenceNet2D
|
| 43 |
+
from musev.models.unet_loader import load_unet_by_name
|
| 44 |
+
from musev.utils.util import save_videos_grid_with_opencv
|
| 45 |
+
from musev import logger
|
| 46 |
+
|
| 47 |
+
logger.setLevel("INFO")
|
| 48 |
+
|
| 49 |
+
file_dir = os.path.dirname(__file__)
|
| 50 |
+
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "./")
|
| 51 |
+
DATA_DIR = os.path.join(PROJECT_DIR, "data")
|
| 52 |
+
CACHE_PATH = "./t2v_input_image"
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# TODO:use group to group arguments
|
| 56 |
+
args_dict = {
|
| 57 |
+
"add_static_video_prompt": False,
|
| 58 |
+
"context_batch_size": 1,
|
| 59 |
+
"context_frames": 12,
|
| 60 |
+
"context_overlap": 4,
|
| 61 |
+
"context_schedule": "uniform_v2",
|
| 62 |
+
"context_stride": 1,
|
| 63 |
+
"controlnet_conditioning_scale": 1.0,
|
| 64 |
+
"controlnet_name": "dwpose_body_hand",
|
| 65 |
+
"cross_attention_dim": 768,
|
| 66 |
+
"enable_zero_snr": False,
|
| 67 |
+
"end_to_end": True,
|
| 68 |
+
"face_image_path": None,
|
| 69 |
+
"facein_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/facein.py"),
|
| 70 |
+
"facein_model_name": None,
|
| 71 |
+
"facein_scale": 1.0,
|
| 72 |
+
"fix_condition_images": False,
|
| 73 |
+
"fixed_ip_adapter_image": True,
|
| 74 |
+
"fixed_refer_face_image": True,
|
| 75 |
+
"fixed_refer_image": True,
|
| 76 |
+
"fps": 4,
|
| 77 |
+
"guidance_scale": 7.5,
|
| 78 |
+
"height": None,
|
| 79 |
+
"img_length_ratio": 1.0,
|
| 80 |
+
"img_weight": 0.001,
|
| 81 |
+
"interpolation_factor": 1,
|
| 82 |
+
"ip_adapter_face_model_cfg_path": os.path.join(
|
| 83 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
| 84 |
+
),
|
| 85 |
+
"ip_adapter_face_model_name": None,
|
| 86 |
+
"ip_adapter_face_scale": 1.0,
|
| 87 |
+
"ip_adapter_model_cfg_path": os.path.join(
|
| 88 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
| 89 |
+
),
|
| 90 |
+
"ip_adapter_model_name": "musev_referencenet",
|
| 91 |
+
"ip_adapter_scale": 1.0,
|
| 92 |
+
"ipadapter_image_path": None,
|
| 93 |
+
"lcm_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/lcm_model.py"),
|
| 94 |
+
"lcm_model_name": None,
|
| 95 |
+
"log_level": "INFO",
|
| 96 |
+
"motion_speed": 8.0,
|
| 97 |
+
"n_batch": 1,
|
| 98 |
+
"n_cols": 3,
|
| 99 |
+
"n_repeat": 1,
|
| 100 |
+
"n_vision_condition": 1,
|
| 101 |
+
"need_hist_match": False,
|
| 102 |
+
"need_img_based_video_noise": True,
|
| 103 |
+
"need_return_condition": False,
|
| 104 |
+
"need_return_videos": False,
|
| 105 |
+
"need_video2video": False,
|
| 106 |
+
"negative_prompt": "V2",
|
| 107 |
+
"negprompt_cfg_path": os.path.join(
|
| 108 |
+
PROJECT_DIR, "./configs/model/negative_prompt.py"
|
| 109 |
+
),
|
| 110 |
+
"noise_type": "video_fusion",
|
| 111 |
+
"num_inference_steps": 30,
|
| 112 |
+
"output_dir": "./results/",
|
| 113 |
+
"overwrite": False,
|
| 114 |
+
"pose_guider_model_path": None,
|
| 115 |
+
"prompt_only_use_image_prompt": False,
|
| 116 |
+
"record_mid_video_latents": False,
|
| 117 |
+
"record_mid_video_noises": False,
|
| 118 |
+
"redraw_condition_image": False,
|
| 119 |
+
"redraw_condition_image_with_facein": True,
|
| 120 |
+
"redraw_condition_image_with_ip_adapter_face": True,
|
| 121 |
+
"redraw_condition_image_with_ipdapter": True,
|
| 122 |
+
"redraw_condition_image_with_referencenet": True,
|
| 123 |
+
"referencenet_image_path": None,
|
| 124 |
+
"referencenet_model_cfg_path": os.path.join(
|
| 125 |
+
PROJECT_DIR, "./configs/model/referencenet.py"
|
| 126 |
+
),
|
| 127 |
+
"referencenet_model_name": "musev_referencenet",
|
| 128 |
+
"sample_rate": 1,
|
| 129 |
+
"save_filetype": "mp4",
|
| 130 |
+
"save_images": False,
|
| 131 |
+
"sd_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/T2I_all_model.py"),
|
| 132 |
+
"sd_model_name": "majicmixRealv6Fp16",
|
| 133 |
+
"seed": None,
|
| 134 |
+
"strength": 0.8,
|
| 135 |
+
"target_datas": "boy_dance2",
|
| 136 |
+
"test_data_path": os.path.join(
|
| 137 |
+
PROJECT_DIR, "./configs/infer/testcase_video_famous.yaml"
|
| 138 |
+
),
|
| 139 |
+
"time_size": 24,
|
| 140 |
+
"unet_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/motion_model.py"),
|
| 141 |
+
"unet_model_name": "musev_referencenet",
|
| 142 |
+
"use_condition_image": True,
|
| 143 |
+
"use_video_redraw": True,
|
| 144 |
+
"vae_model_path": os.path.join(PROJECT_DIR, "./checkpoints/vae/sd-vae-ft-mse"),
|
| 145 |
+
"video_guidance_scale": 3.5,
|
| 146 |
+
"video_guidance_scale_end": None,
|
| 147 |
+
"video_guidance_scale_method": "linear",
|
| 148 |
+
"video_has_condition": True,
|
| 149 |
+
"video_is_middle": False,
|
| 150 |
+
"video_negative_prompt": "V2",
|
| 151 |
+
"video_num_inference_steps": 10,
|
| 152 |
+
"video_overlap": 1,
|
| 153 |
+
"video_strength": 1.0,
|
| 154 |
+
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
|
| 155 |
+
"vision_clip_model_path": os.path.join(
|
| 156 |
+
PROJECT_DIR, "./checkpoints/IP-Adapter/models/image_encoder"
|
| 157 |
+
),
|
| 158 |
+
"w_ind_noise": 0.5,
|
| 159 |
+
"which2video": "video_middle",
|
| 160 |
+
"width": None,
|
| 161 |
+
"write_info": False,
|
| 162 |
+
}
|
| 163 |
+
args = argparse.Namespace(**args_dict)
|
| 164 |
+
print("args")
|
| 165 |
+
pprint(args.__dict__)
|
| 166 |
+
print("\n")
|
| 167 |
+
|
| 168 |
+
logger.setLevel(args.log_level)
|
| 169 |
+
overwrite = args.overwrite
|
| 170 |
+
cross_attention_dim = args.cross_attention_dim
|
| 171 |
+
time_size = args.time_size # 一次视频生成的帧数
|
| 172 |
+
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
|
| 173 |
+
fps = args.fps
|
| 174 |
+
fix_condition_images = args.fix_condition_images
|
| 175 |
+
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
|
| 176 |
+
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
|
| 177 |
+
need_img_based_video_noise = (
|
| 178 |
+
args.need_img_based_video_noise
|
| 179 |
+
) # 视频加噪过程中是否使用首帧 condition_images
|
| 180 |
+
img_weight = args.img_weight
|
| 181 |
+
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
|
| 182 |
+
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
|
| 183 |
+
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
|
| 184 |
+
n_cols = args.n_cols
|
| 185 |
+
noise_type = args.noise_type
|
| 186 |
+
strength = args.strength # 首帧重绘程度参数
|
| 187 |
+
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
|
| 188 |
+
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
|
| 189 |
+
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
|
| 190 |
+
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
|
| 191 |
+
seed = args.seed
|
| 192 |
+
save_filetype = args.save_filetype
|
| 193 |
+
save_images = args.save_images
|
| 194 |
+
sd_model_cfg_path = args.sd_model_cfg_path
|
| 195 |
+
sd_model_name = (
|
| 196 |
+
args.sd_model_name if args.sd_model_name == "all" else args.sd_model_name.split(",")
|
| 197 |
+
)
|
| 198 |
+
unet_model_cfg_path = args.unet_model_cfg_path
|
| 199 |
+
unet_model_name = args.unet_model_name
|
| 200 |
+
test_data_path = args.test_data_path
|
| 201 |
+
target_datas = (
|
| 202 |
+
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
|
| 203 |
+
)
|
| 204 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 205 |
+
torch_dtype = torch.float16
|
| 206 |
+
controlnet_name = args.controlnet_name
|
| 207 |
+
controlnet_name_str = controlnet_name
|
| 208 |
+
if controlnet_name is not None:
|
| 209 |
+
controlnet_name = controlnet_name.split(",")
|
| 210 |
+
if len(controlnet_name) == 1:
|
| 211 |
+
controlnet_name = controlnet_name[0]
|
| 212 |
+
|
| 213 |
+
video_strength = args.video_strength # 视频重绘程度参数
|
| 214 |
+
sample_rate = args.sample_rate
|
| 215 |
+
controlnet_conditioning_scale = args.controlnet_conditioning_scale
|
| 216 |
+
|
| 217 |
+
end_to_end = args.end_to_end # 是否首尾相连生成长视频
|
| 218 |
+
control_guidance_start = 0.0
|
| 219 |
+
control_guidance_end = 0.5
|
| 220 |
+
control_guidance_end = 1.0
|
| 221 |
+
negprompt_cfg_path = args.negprompt_cfg_path
|
| 222 |
+
video_negative_prompt = args.video_negative_prompt
|
| 223 |
+
negative_prompt = args.negative_prompt
|
| 224 |
+
motion_speed = args.motion_speed
|
| 225 |
+
need_hist_match = args.need_hist_match
|
| 226 |
+
video_guidance_scale_end = args.video_guidance_scale_end
|
| 227 |
+
video_guidance_scale_method = args.video_guidance_scale_method
|
| 228 |
+
add_static_video_prompt = args.add_static_video_prompt
|
| 229 |
+
n_vision_condition = args.n_vision_condition
|
| 230 |
+
lcm_model_cfg_path = args.lcm_model_cfg_path
|
| 231 |
+
lcm_model_name = args.lcm_model_name
|
| 232 |
+
referencenet_model_cfg_path = args.referencenet_model_cfg_path
|
| 233 |
+
referencenet_model_name = args.referencenet_model_name
|
| 234 |
+
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
|
| 235 |
+
ip_adapter_model_name = args.ip_adapter_model_name
|
| 236 |
+
vision_clip_model_path = args.vision_clip_model_path
|
| 237 |
+
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
|
| 238 |
+
facein_model_cfg_path = args.facein_model_cfg_path
|
| 239 |
+
facein_model_name = args.facein_model_name
|
| 240 |
+
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
|
| 241 |
+
ip_adapter_face_model_name = args.ip_adapter_face_model_name
|
| 242 |
+
|
| 243 |
+
fixed_refer_image = args.fixed_refer_image
|
| 244 |
+
fixed_ip_adapter_image = args.fixed_ip_adapter_image
|
| 245 |
+
fixed_refer_face_image = args.fixed_refer_face_image
|
| 246 |
+
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
|
| 247 |
+
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
|
| 248 |
+
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
|
| 249 |
+
redraw_condition_image_with_ip_adapter_face = (
|
| 250 |
+
args.redraw_condition_image_with_ip_adapter_face
|
| 251 |
+
)
|
| 252 |
+
w_ind_noise = args.w_ind_noise
|
| 253 |
+
ip_adapter_scale = args.ip_adapter_scale
|
| 254 |
+
facein_scale = args.facein_scale
|
| 255 |
+
ip_adapter_face_scale = args.ip_adapter_face_scale
|
| 256 |
+
face_image_path = args.face_image_path
|
| 257 |
+
ipadapter_image_path = args.ipadapter_image_path
|
| 258 |
+
referencenet_image_path = args.referencenet_image_path
|
| 259 |
+
vae_model_path = args.vae_model_path
|
| 260 |
+
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
|
| 261 |
+
pose_guider_model_path = args.pose_guider_model_path
|
| 262 |
+
need_video2video = args.need_video2video
|
| 263 |
+
# serial_denoise parameter start
|
| 264 |
+
record_mid_video_noises = args.record_mid_video_noises
|
| 265 |
+
record_mid_video_latents = args.record_mid_video_latents
|
| 266 |
+
video_overlap = args.video_overlap
|
| 267 |
+
# serial_denoise parameter end
|
| 268 |
+
# parallel_denoise parameter start
|
| 269 |
+
context_schedule = args.context_schedule
|
| 270 |
+
context_frames = args.context_frames
|
| 271 |
+
context_stride = args.context_stride
|
| 272 |
+
context_overlap = args.context_overlap
|
| 273 |
+
context_batch_size = args.context_batch_size
|
| 274 |
+
interpolation_factor = args.interpolation_factor
|
| 275 |
+
n_repeat = args.n_repeat
|
| 276 |
+
|
| 277 |
+
video_is_middle = args.video_is_middle
|
| 278 |
+
video_has_condition = args.video_has_condition
|
| 279 |
+
need_return_videos = args.need_return_videos
|
| 280 |
+
need_return_condition = args.need_return_condition
|
| 281 |
+
# parallel_denoise parameter end
|
| 282 |
+
need_controlnet = controlnet_name is not None
|
| 283 |
+
|
| 284 |
+
which2video = args.which2video
|
| 285 |
+
if which2video == "video":
|
| 286 |
+
which2video_name = "v2v"
|
| 287 |
+
elif which2video == "video_middle":
|
| 288 |
+
which2video_name = "vm2v"
|
| 289 |
+
else:
|
| 290 |
+
raise ValueError(
|
| 291 |
+
"which2video only support video, video_middle, but given {which2video}"
|
| 292 |
+
)
|
| 293 |
+
b = 1
|
| 294 |
+
negative_embedding = [
|
| 295 |
+
[os.path.join(PROJECT_DIR, "./checkpoints/embedding/badhandv4.pt"), "badhandv4"],
|
| 296 |
+
[
|
| 297 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/ng_deepnegative_v1_75t.pt"),
|
| 298 |
+
"ng_deepnegative_v1_75t",
|
| 299 |
+
],
|
| 300 |
+
[
|
| 301 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/EasyNegativeV2.safetensors"),
|
| 302 |
+
"EasyNegativeV2",
|
| 303 |
+
],
|
| 304 |
+
[
|
| 305 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/bad_prompt_version2-neg.pt"),
|
| 306 |
+
"bad_prompt_version2-neg",
|
| 307 |
+
],
|
| 308 |
+
]
|
| 309 |
+
prefix_prompt = ""
|
| 310 |
+
suffix_prompt = ", beautiful, masterpiece, best quality"
|
| 311 |
+
suffix_prompt = ""
|
| 312 |
+
|
| 313 |
+
if sd_model_name != "None":
|
| 314 |
+
# 使用 cfg_path 里的sd_model_path
|
| 315 |
+
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
|
| 316 |
+
sd_model_params_dict = {
|
| 317 |
+
k: v
|
| 318 |
+
for k, v in sd_model_params_dict_src.items()
|
| 319 |
+
if sd_model_name == "all" or k in sd_model_name
|
| 320 |
+
}
|
| 321 |
+
else:
|
| 322 |
+
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
|
| 323 |
+
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
|
| 324 |
+
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
|
| 325 |
+
sd_model_params_dict_src = sd_model_params_dict
|
| 326 |
+
if len(sd_model_params_dict) == 0:
|
| 327 |
+
raise ValueError(
|
| 328 |
+
"has not target model, please set one of {}".format(
|
| 329 |
+
" ".join(list(sd_model_params_dict_src.keys()))
|
| 330 |
+
)
|
| 331 |
+
)
|
| 332 |
+
print("running model, T2I SD")
|
| 333 |
+
pprint(sd_model_params_dict)
|
| 334 |
+
|
| 335 |
+
# lcm
|
| 336 |
+
if lcm_model_name is not None:
|
| 337 |
+
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
|
| 338 |
+
print("lcm_model_params_dict_src")
|
| 339 |
+
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
|
| 340 |
+
else:
|
| 341 |
+
lcm_lora_dct = None
|
| 342 |
+
print("lcm: ", lcm_model_name, lcm_lora_dct)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
# motion net parameters
|
| 346 |
+
if os.path.isdir(unet_model_cfg_path):
|
| 347 |
+
unet_model_path = unet_model_cfg_path
|
| 348 |
+
elif os.path.isfile(unet_model_cfg_path):
|
| 349 |
+
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
|
| 350 |
+
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
|
| 351 |
+
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
|
| 352 |
+
else:
|
| 353 |
+
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
|
| 354 |
+
print("unet: ", unet_model_name, unet_model_path)
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# referencenet
|
| 358 |
+
if referencenet_model_name is not None:
|
| 359 |
+
if os.path.isdir(referencenet_model_cfg_path):
|
| 360 |
+
referencenet_model_path = referencenet_model_cfg_path
|
| 361 |
+
elif os.path.isfile(referencenet_model_cfg_path):
|
| 362 |
+
referencenet_model_params_dict_src = load_pyhon_obj(
|
| 363 |
+
referencenet_model_cfg_path, "MODEL_CFG"
|
| 364 |
+
)
|
| 365 |
+
print(
|
| 366 |
+
"referencenet_model_params_dict_src",
|
| 367 |
+
referencenet_model_params_dict_src.keys(),
|
| 368 |
+
)
|
| 369 |
+
referencenet_model_path = referencenet_model_params_dict_src[
|
| 370 |
+
referencenet_model_name
|
| 371 |
+
]["net"]
|
| 372 |
+
else:
|
| 373 |
+
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
|
| 374 |
+
else:
|
| 375 |
+
referencenet_model_path = None
|
| 376 |
+
print("referencenet: ", referencenet_model_name, referencenet_model_path)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
# ip_adapter
|
| 380 |
+
if ip_adapter_model_name is not None:
|
| 381 |
+
ip_adapter_model_params_dict_src = load_pyhon_obj(
|
| 382 |
+
ip_adapter_model_cfg_path, "MODEL_CFG"
|
| 383 |
+
)
|
| 384 |
+
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
|
| 385 |
+
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
|
| 386 |
+
ip_adapter_model_name
|
| 387 |
+
]
|
| 388 |
+
else:
|
| 389 |
+
ip_adapter_model_params_dict = None
|
| 390 |
+
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# facein
|
| 394 |
+
if facein_model_name is not None:
|
| 395 |
+
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
|
| 396 |
+
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
|
| 397 |
+
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
|
| 398 |
+
else:
|
| 399 |
+
facein_model_params_dict = None
|
| 400 |
+
print("facein: ", facein_model_name, facein_model_params_dict)
|
| 401 |
+
|
| 402 |
+
# ip_adapter_face
|
| 403 |
+
if ip_adapter_face_model_name is not None:
|
| 404 |
+
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
|
| 405 |
+
ip_adapter_face_model_cfg_path, "MODEL_CFG"
|
| 406 |
+
)
|
| 407 |
+
print(
|
| 408 |
+
"ip_adapter_face_model_params_dict_src",
|
| 409 |
+
ip_adapter_face_model_params_dict_src.keys(),
|
| 410 |
+
)
|
| 411 |
+
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
|
| 412 |
+
ip_adapter_face_model_name
|
| 413 |
+
]
|
| 414 |
+
else:
|
| 415 |
+
ip_adapter_face_model_params_dict = None
|
| 416 |
+
print(
|
| 417 |
+
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
# negative_prompt
|
| 422 |
+
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
|
| 423 |
+
name = negative_prompt[:n]
|
| 424 |
+
if cfg_path is not None and cfg_path not in ["None", "none"]:
|
| 425 |
+
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
|
| 426 |
+
negative_prompt = dct[negative_prompt]["prompt"]
|
| 427 |
+
|
| 428 |
+
return name, negative_prompt
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
negtive_prompt_length = 10
|
| 432 |
+
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
|
| 433 |
+
video_negative_prompt,
|
| 434 |
+
cfg_path=negprompt_cfg_path,
|
| 435 |
+
n=negtive_prompt_length,
|
| 436 |
+
)
|
| 437 |
+
negative_prompt_name, negative_prompt = get_negative_prompt(
|
| 438 |
+
negative_prompt,
|
| 439 |
+
cfg_path=negprompt_cfg_path,
|
| 440 |
+
n=negtive_prompt_length,
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
|
| 444 |
+
print("negprompt", negative_prompt_name, negative_prompt)
|
| 445 |
+
|
| 446 |
+
output_dir = args.output_dir
|
| 447 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
# test_data_parameters
|
| 451 |
+
def load_yaml(path):
|
| 452 |
+
tasks = OmegaConf.to_container(
|
| 453 |
+
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
|
| 454 |
+
)
|
| 455 |
+
return tasks
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
# if test_data_path.endswith(".yaml"):
|
| 459 |
+
# test_datas_src = load_yaml(test_data_path)
|
| 460 |
+
# elif test_data_path.endswith(".csv"):
|
| 461 |
+
# test_datas_src = generate_tasks_from_table(test_data_path)
|
| 462 |
+
# else:
|
| 463 |
+
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
|
| 464 |
+
|
| 465 |
+
# test_datas = [
|
| 466 |
+
# test_data
|
| 467 |
+
# for test_data in test_datas_src
|
| 468 |
+
# if target_datas == "all" or test_data.get("name", None) in target_datas
|
| 469 |
+
# ]
|
| 470 |
+
|
| 471 |
+
# test_datas = fiss_tasks(test_datas)
|
| 472 |
+
# test_datas = generate_prompts(test_datas)
|
| 473 |
+
|
| 474 |
+
# n_test_datas = len(test_datas)
|
| 475 |
+
# if n_test_datas == 0:
|
| 476 |
+
# raise ValueError(
|
| 477 |
+
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
|
| 478 |
+
# " ".join(list(d.get("name", "None") for d in test_datas_src))
|
| 479 |
+
# )
|
| 480 |
+
# )
|
| 481 |
+
# print("n_test_datas", n_test_datas)
|
| 482 |
+
# # pprint(test_datas)
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
def read_image(path):
|
| 486 |
+
name = os.path.basename(path).split(".")[0]
|
| 487 |
+
image = read_image_as_5d(path)
|
| 488 |
+
return image, name
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def read_image_lst(path):
|
| 492 |
+
images_names = [read_image(x) for x in path]
|
| 493 |
+
images, names = zip(*images_names)
|
| 494 |
+
images = np.concatenate(images, axis=2)
|
| 495 |
+
name = "_".join(names)
|
| 496 |
+
return images, name
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
def read_image_and_name(path):
|
| 500 |
+
if isinstance(path, str):
|
| 501 |
+
path = [path]
|
| 502 |
+
images, name = read_image_lst(path)
|
| 503 |
+
return images, name
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
if referencenet_model_name is not None:
|
| 507 |
+
referencenet = load_referencenet_by_name(
|
| 508 |
+
model_name=referencenet_model_name,
|
| 509 |
+
# sd_model=sd_model_path,
|
| 510 |
+
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
|
| 511 |
+
sd_referencenet_model=referencenet_model_path,
|
| 512 |
+
cross_attention_dim=cross_attention_dim,
|
| 513 |
+
)
|
| 514 |
+
else:
|
| 515 |
+
referencenet = None
|
| 516 |
+
referencenet_model_name = "no"
|
| 517 |
+
|
| 518 |
+
if vision_clip_extractor_class_name is not None:
|
| 519 |
+
vision_clip_extractor = load_vision_clip_encoder_by_name(
|
| 520 |
+
ip_image_encoder=vision_clip_model_path,
|
| 521 |
+
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
|
| 522 |
+
)
|
| 523 |
+
logger.info(
|
| 524 |
+
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
|
| 525 |
+
)
|
| 526 |
+
else:
|
| 527 |
+
vision_clip_extractor = None
|
| 528 |
+
logger.info(f"vision_clip_extractor, None")
|
| 529 |
+
|
| 530 |
+
if ip_adapter_model_name is not None:
|
| 531 |
+
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
|
| 532 |
+
model_name=ip_adapter_model_name,
|
| 533 |
+
ip_image_encoder=ip_adapter_model_params_dict.get(
|
| 534 |
+
"ip_image_encoder", vision_clip_model_path
|
| 535 |
+
),
|
| 536 |
+
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
|
| 537 |
+
cross_attention_dim=cross_attention_dim,
|
| 538 |
+
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
|
| 539 |
+
clip_extra_context_tokens=ip_adapter_model_params_dict[
|
| 540 |
+
"clip_extra_context_tokens"
|
| 541 |
+
],
|
| 542 |
+
ip_scale=ip_adapter_model_params_dict["ip_scale"],
|
| 543 |
+
device=device,
|
| 544 |
+
)
|
| 545 |
+
else:
|
| 546 |
+
ip_adapter_image_proj = None
|
| 547 |
+
ip_adapter_model_name = "no"
|
| 548 |
+
|
| 549 |
+
if pose_guider_model_path is not None:
|
| 550 |
+
logger.info(f"PoseGuider ={pose_guider_model_path}")
|
| 551 |
+
pose_guider = PoseGuider.from_pretrained(
|
| 552 |
+
pose_guider_model_path,
|
| 553 |
+
conditioning_embedding_channels=320,
|
| 554 |
+
block_out_channels=(16, 32, 96, 256),
|
| 555 |
+
)
|
| 556 |
+
else:
|
| 557 |
+
pose_guider = None
|
| 558 |
+
|
| 559 |
+
for model_name, sd_model_params in sd_model_params_dict.items():
|
| 560 |
+
lora_dict = sd_model_params.get("lora", None)
|
| 561 |
+
model_sex = sd_model_params.get("sex", None)
|
| 562 |
+
model_style = sd_model_params.get("style", None)
|
| 563 |
+
sd_model_path = sd_model_params["sd"]
|
| 564 |
+
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
|
| 565 |
+
|
| 566 |
+
unet = load_unet_by_name(
|
| 567 |
+
model_name=unet_model_name,
|
| 568 |
+
sd_unet_model=unet_model_path,
|
| 569 |
+
sd_model=sd_model_path,
|
| 570 |
+
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
|
| 571 |
+
cross_attention_dim=cross_attention_dim,
|
| 572 |
+
need_t2i_facein=facein_model_name is not None,
|
| 573 |
+
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
|
| 574 |
+
strict=not (facein_model_name is not None),
|
| 575 |
+
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
if facein_model_name is not None:
|
| 579 |
+
(
|
| 580 |
+
face_emb_extractor,
|
| 581 |
+
facein_image_proj,
|
| 582 |
+
) = load_facein_extractor_and_proj_by_name(
|
| 583 |
+
model_name=facein_model_name,
|
| 584 |
+
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
|
| 585 |
+
ip_ckpt=facein_model_params_dict["ip_ckpt"],
|
| 586 |
+
cross_attention_dim=cross_attention_dim,
|
| 587 |
+
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
|
| 588 |
+
clip_extra_context_tokens=facein_model_params_dict[
|
| 589 |
+
"clip_extra_context_tokens"
|
| 590 |
+
],
|
| 591 |
+
ip_scale=facein_model_params_dict["ip_scale"],
|
| 592 |
+
device=device,
|
| 593 |
+
# facein目前没有参与unet中的训练,需要单独载入参数
|
| 594 |
+
unet=unet,
|
| 595 |
+
)
|
| 596 |
+
else:
|
| 597 |
+
face_emb_extractor = None
|
| 598 |
+
facein_image_proj = None
|
| 599 |
+
|
| 600 |
+
if ip_adapter_face_model_name is not None:
|
| 601 |
+
(
|
| 602 |
+
ip_adapter_face_emb_extractor,
|
| 603 |
+
ip_adapter_face_image_proj,
|
| 604 |
+
) = load_ip_adapter_face_extractor_and_proj_by_name(
|
| 605 |
+
model_name=ip_adapter_face_model_name,
|
| 606 |
+
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
|
| 607 |
+
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
|
| 608 |
+
cross_attention_dim=cross_attention_dim,
|
| 609 |
+
clip_embeddings_dim=ip_adapter_face_model_params_dict[
|
| 610 |
+
"clip_embeddings_dim"
|
| 611 |
+
],
|
| 612 |
+
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
|
| 613 |
+
"clip_extra_context_tokens"
|
| 614 |
+
],
|
| 615 |
+
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
|
| 616 |
+
device=device,
|
| 617 |
+
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
|
| 618 |
+
)
|
| 619 |
+
else:
|
| 620 |
+
ip_adapter_face_emb_extractor = None
|
| 621 |
+
ip_adapter_face_image_proj = None
|
| 622 |
+
|
| 623 |
+
print("test_model_vae_model_path", test_model_vae_model_path)
|
| 624 |
+
|
| 625 |
+
sd_predictor = DiffusersPipelinePredictor(
|
| 626 |
+
sd_model_path=sd_model_path,
|
| 627 |
+
unet=unet,
|
| 628 |
+
lora_dict=lora_dict,
|
| 629 |
+
lcm_lora_dct=lcm_lora_dct,
|
| 630 |
+
device=device,
|
| 631 |
+
dtype=torch_dtype,
|
| 632 |
+
negative_embedding=negative_embedding,
|
| 633 |
+
referencenet=referencenet,
|
| 634 |
+
ip_adapter_image_proj=ip_adapter_image_proj,
|
| 635 |
+
vision_clip_extractor=vision_clip_extractor,
|
| 636 |
+
facein_image_proj=facein_image_proj,
|
| 637 |
+
face_emb_extractor=face_emb_extractor,
|
| 638 |
+
vae_model=test_model_vae_model_path,
|
| 639 |
+
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
|
| 640 |
+
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
|
| 641 |
+
pose_guider=pose_guider,
|
| 642 |
+
controlnet_name=controlnet_name,
|
| 643 |
+
# TODO: 一些过期参数,待去掉
|
| 644 |
+
include_body=True,
|
| 645 |
+
include_face=False,
|
| 646 |
+
include_hand=True,
|
| 647 |
+
enable_zero_snr=args.enable_zero_snr,
|
| 648 |
+
)
|
| 649 |
+
logger.debug(f"load referencenet"),
|
| 650 |
+
|
| 651 |
+
# TODO:这里修改为gradio
|
| 652 |
+
import cuid
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
def generate_cuid():
|
| 656 |
+
return cuid.cuid()
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
def online_v2v_inference(
|
| 660 |
+
prompt,
|
| 661 |
+
image_np,
|
| 662 |
+
video,
|
| 663 |
+
processor,
|
| 664 |
+
seed,
|
| 665 |
+
fps,
|
| 666 |
+
w,
|
| 667 |
+
h,
|
| 668 |
+
video_length,
|
| 669 |
+
img_edge_ratio: float = 1.0,
|
| 670 |
+
progress=gr.Progress(track_tqdm=True),
|
| 671 |
+
):
|
| 672 |
+
progress(0, desc="Starting...")
|
| 673 |
+
# Save the uploaded image to a specified path
|
| 674 |
+
if not os.path.exists(CACHE_PATH):
|
| 675 |
+
os.makedirs(CACHE_PATH)
|
| 676 |
+
image_cuid = generate_cuid()
|
| 677 |
+
import pdb
|
| 678 |
+
|
| 679 |
+
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
|
| 680 |
+
image = Image.fromarray(image_np)
|
| 681 |
+
image.save(image_path)
|
| 682 |
+
time_size = int(video_length)
|
| 683 |
+
test_data = {
|
| 684 |
+
"name": image_cuid,
|
| 685 |
+
"prompt": prompt,
|
| 686 |
+
"video_path": video,
|
| 687 |
+
"condition_images": image_path,
|
| 688 |
+
"refer_image": image_path,
|
| 689 |
+
"ipadapter_image": image_path,
|
| 690 |
+
"height": h,
|
| 691 |
+
"width": w,
|
| 692 |
+
"img_length_ratio": img_edge_ratio,
|
| 693 |
+
# 'style': 'anime',
|
| 694 |
+
# 'sex': 'female'
|
| 695 |
+
}
|
| 696 |
+
batch = []
|
| 697 |
+
texts = []
|
| 698 |
+
video_path = test_data.get("video_path")
|
| 699 |
+
video_reader = DecordVideoDataset(
|
| 700 |
+
video_path,
|
| 701 |
+
time_size=int(video_length),
|
| 702 |
+
step=time_size,
|
| 703 |
+
sample_rate=sample_rate,
|
| 704 |
+
device="cpu",
|
| 705 |
+
data_type="rgb",
|
| 706 |
+
channels_order="c t h w",
|
| 707 |
+
drop_last=True,
|
| 708 |
+
)
|
| 709 |
+
video_height = video_reader.height
|
| 710 |
+
video_width = video_reader.width
|
| 711 |
+
|
| 712 |
+
print("\n i_test_data", test_data, model_name)
|
| 713 |
+
test_data_name = test_data.get("name", test_data)
|
| 714 |
+
prompt = test_data["prompt"]
|
| 715 |
+
prompt = prefix_prompt + prompt + suffix_prompt
|
| 716 |
+
prompt_hash = get_signature_of_string(prompt, length=5)
|
| 717 |
+
test_data["prompt_hash"] = prompt_hash
|
| 718 |
+
test_data_height = test_data.get("height", height)
|
| 719 |
+
test_data_width = test_data.get("width", width)
|
| 720 |
+
test_data_condition_images_path = test_data.get("condition_images", None)
|
| 721 |
+
test_data_condition_images_index = test_data.get("condition_images_index", None)
|
| 722 |
+
test_data_redraw_condition_image = test_data.get(
|
| 723 |
+
"redraw_condition_image", redraw_condition_image
|
| 724 |
+
)
|
| 725 |
+
# read condition_image
|
| 726 |
+
if (
|
| 727 |
+
test_data_condition_images_path is not None
|
| 728 |
+
and use_condition_image
|
| 729 |
+
and (
|
| 730 |
+
isinstance(test_data_condition_images_path, list)
|
| 731 |
+
or (
|
| 732 |
+
isinstance(test_data_condition_images_path, str)
|
| 733 |
+
and is_image(test_data_condition_images_path)
|
| 734 |
+
)
|
| 735 |
+
)
|
| 736 |
+
):
|
| 737 |
+
(
|
| 738 |
+
test_data_condition_images,
|
| 739 |
+
test_data_condition_images_name,
|
| 740 |
+
) = read_image_and_name(test_data_condition_images_path)
|
| 741 |
+
condition_image_height = test_data_condition_images.shape[3]
|
| 742 |
+
condition_image_width = test_data_condition_images.shape[4]
|
| 743 |
+
logger.debug(
|
| 744 |
+
f"test_data_condition_images use {test_data_condition_images_path}"
|
| 745 |
+
)
|
| 746 |
+
else:
|
| 747 |
+
test_data_condition_images = None
|
| 748 |
+
test_data_condition_images_name = "no"
|
| 749 |
+
condition_image_height = None
|
| 750 |
+
condition_image_width = None
|
| 751 |
+
logger.debug(f"test_data_condition_images is None")
|
| 752 |
+
|
| 753 |
+
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
|
| 754 |
+
if test_data_height in [None, -1]:
|
| 755 |
+
test_data_height = condition_image_height
|
| 756 |
+
|
| 757 |
+
if test_data_width in [None, -1]:
|
| 758 |
+
test_data_width = condition_image_width
|
| 759 |
+
|
| 760 |
+
test_data_img_length_ratio = float(
|
| 761 |
+
test_data.get("img_length_ratio", img_length_ratio)
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
|
| 765 |
+
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
|
| 766 |
+
pprint(test_data)
|
| 767 |
+
print(f"test_data_height={test_data_height}")
|
| 768 |
+
print(f"test_data_width={test_data_width}")
|
| 769 |
+
# continue
|
| 770 |
+
test_data_style = test_data.get("style", None)
|
| 771 |
+
test_data_sex = test_data.get("sex", None)
|
| 772 |
+
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
|
| 773 |
+
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
|
| 774 |
+
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
|
| 775 |
+
test_data_img_weight = float(test_data.get("img_weight", img_weight))
|
| 776 |
+
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
|
| 777 |
+
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
|
| 778 |
+
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
|
| 779 |
+
test_data_ipadapter_image_path = test_data.get(
|
| 780 |
+
"ipadapter_image", ipadapter_image_path
|
| 781 |
+
)
|
| 782 |
+
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
|
| 783 |
+
test_data_video_is_middle = test_data.get("video_is_middle", video_is_middle)
|
| 784 |
+
test_data_video_has_condition = test_data.get(
|
| 785 |
+
"video_has_condition", video_has_condition
|
| 786 |
+
)
|
| 787 |
+
|
| 788 |
+
controlnet_processor_params = {
|
| 789 |
+
"detect_resolution": min(test_data_height, test_data_width),
|
| 790 |
+
"image_resolution": min(test_data_height, test_data_width),
|
| 791 |
+
}
|
| 792 |
+
if negprompt_cfg_path is not None:
|
| 793 |
+
if "video_negative_prompt" in test_data:
|
| 794 |
+
(
|
| 795 |
+
test_data_video_negative_prompt_name,
|
| 796 |
+
test_data_video_negative_prompt,
|
| 797 |
+
) = get_negative_prompt(
|
| 798 |
+
test_data.get(
|
| 799 |
+
"video_negative_prompt",
|
| 800 |
+
),
|
| 801 |
+
cfg_path=negprompt_cfg_path,
|
| 802 |
+
n=negtive_prompt_length,
|
| 803 |
+
)
|
| 804 |
+
else:
|
| 805 |
+
test_data_video_negative_prompt_name = video_negative_prompt_name
|
| 806 |
+
test_data_video_negative_prompt = video_negative_prompt
|
| 807 |
+
if "negative_prompt" in test_data:
|
| 808 |
+
(
|
| 809 |
+
test_data_negative_prompt_name,
|
| 810 |
+
test_data_negative_prompt,
|
| 811 |
+
) = get_negative_prompt(
|
| 812 |
+
test_data.get(
|
| 813 |
+
"negative_prompt",
|
| 814 |
+
),
|
| 815 |
+
cfg_path=negprompt_cfg_path,
|
| 816 |
+
n=negtive_prompt_length,
|
| 817 |
+
)
|
| 818 |
+
else:
|
| 819 |
+
test_data_negative_prompt_name = negative_prompt_name
|
| 820 |
+
test_data_negative_prompt = negative_prompt
|
| 821 |
+
else:
|
| 822 |
+
test_data_video_negative_prompt = test_data.get(
|
| 823 |
+
"video_negative_prompt", video_negative_prompt
|
| 824 |
+
)
|
| 825 |
+
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
|
| 826 |
+
:negtive_prompt_length
|
| 827 |
+
]
|
| 828 |
+
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
|
| 829 |
+
test_data_negative_prompt_name = test_data_negative_prompt[
|
| 830 |
+
:negtive_prompt_length
|
| 831 |
+
]
|
| 832 |
+
|
| 833 |
+
# 准备 test_data_refer_image
|
| 834 |
+
if referencenet is not None:
|
| 835 |
+
if test_data_refer_image_path is None:
|
| 836 |
+
test_data_refer_image = test_data_condition_images
|
| 837 |
+
test_data_refer_image_name = test_data_condition_images_name
|
| 838 |
+
logger.debug(f"test_data_refer_image use test_data_condition_images")
|
| 839 |
+
else:
|
| 840 |
+
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
|
| 841 |
+
test_data_refer_image_path
|
| 842 |
+
)
|
| 843 |
+
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
|
| 844 |
+
else:
|
| 845 |
+
test_data_refer_image = None
|
| 846 |
+
test_data_refer_image_name = "no"
|
| 847 |
+
logger.debug(f"test_data_refer_image is None")
|
| 848 |
+
|
| 849 |
+
# 准备 test_data_ipadapter_image
|
| 850 |
+
if vision_clip_extractor is not None:
|
| 851 |
+
if test_data_ipadapter_image_path is None:
|
| 852 |
+
test_data_ipadapter_image = test_data_condition_images
|
| 853 |
+
test_data_ipadapter_image_name = test_data_condition_images_name
|
| 854 |
+
|
| 855 |
+
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
|
| 856 |
+
else:
|
| 857 |
+
(
|
| 858 |
+
test_data_ipadapter_image,
|
| 859 |
+
test_data_ipadapter_image_name,
|
| 860 |
+
) = read_image_and_name(test_data_ipadapter_image_path)
|
| 861 |
+
logger.debug(
|
| 862 |
+
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
|
| 863 |
+
)
|
| 864 |
+
else:
|
| 865 |
+
test_data_ipadapter_image = None
|
| 866 |
+
test_data_ipadapter_image_name = "no"
|
| 867 |
+
logger.debug(f"test_data_ipadapter_image is None")
|
| 868 |
+
|
| 869 |
+
# 准备 test_data_refer_face_image
|
| 870 |
+
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
|
| 871 |
+
if test_data_refer_face_image_path is None:
|
| 872 |
+
test_data_refer_face_image = test_data_condition_images
|
| 873 |
+
test_data_refer_face_image_name = test_data_condition_images_name
|
| 874 |
+
|
| 875 |
+
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
|
| 876 |
+
else:
|
| 877 |
+
(
|
| 878 |
+
test_data_refer_face_image,
|
| 879 |
+
test_data_refer_face_image_name,
|
| 880 |
+
) = read_image_and_name(test_data_refer_face_image_path)
|
| 881 |
+
logger.debug(
|
| 882 |
+
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
|
| 883 |
+
)
|
| 884 |
+
else:
|
| 885 |
+
test_data_refer_face_image = None
|
| 886 |
+
test_data_refer_face_image_name = "no"
|
| 887 |
+
logger.debug(f"test_data_refer_face_image is None")
|
| 888 |
+
|
| 889 |
+
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
|
| 890 |
+
# if (
|
| 891 |
+
# model_sex is not None
|
| 892 |
+
# and test_data_sex is not None
|
| 893 |
+
# and model_sex != test_data_sex
|
| 894 |
+
# ) or (
|
| 895 |
+
# model_style is not None
|
| 896 |
+
# and test_data_style is not None
|
| 897 |
+
# and model_style != test_data_style
|
| 898 |
+
# ):
|
| 899 |
+
# print("model doesnt match test_data")
|
| 900 |
+
# print("model name: ", model_name)
|
| 901 |
+
# print("test_data: ", test_data)
|
| 902 |
+
# continue
|
| 903 |
+
# video
|
| 904 |
+
filename = os.path.basename(video_path).split(".")[0]
|
| 905 |
+
for i_num in range(n_repeat):
|
| 906 |
+
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
|
| 907 |
+
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
|
| 908 |
+
|
| 909 |
+
save_file_name = (
|
| 910 |
+
f"{which2video_name}_m={model_name}_rm={referencenet_model_name}_c={test_data_name}"
|
| 911 |
+
f"_w={test_data_width}_h={test_data_height}_t={time_size}_n={n_batch}"
|
| 912 |
+
f"_vn={video_num_inference_steps}"
|
| 913 |
+
f"_w={test_data_img_weight}_w={test_data_w_ind_noise}"
|
| 914 |
+
f"_s={test_data_seed}_n={controlnet_name_str}"
|
| 915 |
+
f"_s={strength}_g={guidance_scale}_vs={video_strength}_vg={video_guidance_scale}"
|
| 916 |
+
f"_p={prompt_hash}_{test_data_video_negative_prompt_name[:10]}"
|
| 917 |
+
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
|
| 918 |
+
)
|
| 919 |
+
save_file_name = clean_str_for_save(save_file_name)
|
| 920 |
+
output_path = os.path.join(
|
| 921 |
+
output_dir,
|
| 922 |
+
f"{save_file_name}.{save_filetype}",
|
| 923 |
+
)
|
| 924 |
+
if os.path.exists(output_path) and not overwrite:
|
| 925 |
+
print("existed", output_path)
|
| 926 |
+
continue
|
| 927 |
+
|
| 928 |
+
if which2video in ["video", "video_middle"]:
|
| 929 |
+
need_video2video = False
|
| 930 |
+
if which2video == "video":
|
| 931 |
+
need_video2video = True
|
| 932 |
+
|
| 933 |
+
(
|
| 934 |
+
out_videos,
|
| 935 |
+
out_condition,
|
| 936 |
+
videos,
|
| 937 |
+
) = sd_predictor.run_pipe_video2video(
|
| 938 |
+
video=video_path,
|
| 939 |
+
time_size=time_size,
|
| 940 |
+
step=time_size,
|
| 941 |
+
sample_rate=sample_rate,
|
| 942 |
+
need_return_videos=need_return_videos,
|
| 943 |
+
need_return_condition=need_return_condition,
|
| 944 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 945 |
+
control_guidance_start=control_guidance_start,
|
| 946 |
+
control_guidance_end=control_guidance_end,
|
| 947 |
+
end_to_end=end_to_end,
|
| 948 |
+
need_video2video=need_video2video,
|
| 949 |
+
video_strength=video_strength,
|
| 950 |
+
prompt=prompt,
|
| 951 |
+
width=test_data_width,
|
| 952 |
+
height=test_data_height,
|
| 953 |
+
generator=gpu_generator,
|
| 954 |
+
noise_type=noise_type,
|
| 955 |
+
negative_prompt=test_data_negative_prompt,
|
| 956 |
+
video_negative_prompt=test_data_video_negative_prompt,
|
| 957 |
+
max_batch_num=n_batch,
|
| 958 |
+
strength=strength,
|
| 959 |
+
need_img_based_video_noise=need_img_based_video_noise,
|
| 960 |
+
video_num_inference_steps=video_num_inference_steps,
|
| 961 |
+
condition_images=test_data_condition_images,
|
| 962 |
+
fix_condition_images=fix_condition_images,
|
| 963 |
+
video_guidance_scale=video_guidance_scale,
|
| 964 |
+
guidance_scale=guidance_scale,
|
| 965 |
+
num_inference_steps=num_inference_steps,
|
| 966 |
+
redraw_condition_image=test_data_redraw_condition_image,
|
| 967 |
+
img_weight=test_data_img_weight,
|
| 968 |
+
w_ind_noise=test_data_w_ind_noise,
|
| 969 |
+
n_vision_condition=n_vision_condition,
|
| 970 |
+
motion_speed=test_data_motion_speed,
|
| 971 |
+
need_hist_match=need_hist_match,
|
| 972 |
+
video_guidance_scale_end=video_guidance_scale_end,
|
| 973 |
+
video_guidance_scale_method=video_guidance_scale_method,
|
| 974 |
+
vision_condition_latent_index=test_data_condition_images_index,
|
| 975 |
+
refer_image=test_data_refer_image,
|
| 976 |
+
fixed_refer_image=fixed_refer_image,
|
| 977 |
+
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
|
| 978 |
+
ip_adapter_image=test_data_ipadapter_image,
|
| 979 |
+
refer_face_image=test_data_refer_face_image,
|
| 980 |
+
fixed_refer_face_image=fixed_refer_face_image,
|
| 981 |
+
facein_scale=facein_scale,
|
| 982 |
+
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
|
| 983 |
+
ip_adapter_face_scale=ip_adapter_face_scale,
|
| 984 |
+
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
|
| 985 |
+
fixed_ip_adapter_image=fixed_ip_adapter_image,
|
| 986 |
+
ip_adapter_scale=ip_adapter_scale,
|
| 987 |
+
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
|
| 988 |
+
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
|
| 989 |
+
controlnet_processor_params=controlnet_processor_params,
|
| 990 |
+
# serial_denoise parameter start
|
| 991 |
+
record_mid_video_noises=record_mid_video_noises,
|
| 992 |
+
record_mid_video_latents=record_mid_video_latents,
|
| 993 |
+
video_overlap=video_overlap,
|
| 994 |
+
# serial_denoise parameter end
|
| 995 |
+
# parallel_denoise parameter start
|
| 996 |
+
context_schedule=context_schedule,
|
| 997 |
+
context_frames=context_frames,
|
| 998 |
+
context_stride=context_stride,
|
| 999 |
+
context_overlap=context_overlap,
|
| 1000 |
+
context_batch_size=context_batch_size,
|
| 1001 |
+
interpolation_factor=interpolation_factor,
|
| 1002 |
+
# parallel_denoise parameter end
|
| 1003 |
+
video_is_middle=test_data_video_is_middle,
|
| 1004 |
+
video_has_condition=test_data_video_has_condition,
|
| 1005 |
+
)
|
| 1006 |
+
else:
|
| 1007 |
+
raise ValueError(
|
| 1008 |
+
f"only support video, videomiddle2video, but given {which2video_name}"
|
| 1009 |
+
)
|
| 1010 |
+
print("out_videos.shape", out_videos.shape)
|
| 1011 |
+
batch = [out_videos]
|
| 1012 |
+
texts = ["out"]
|
| 1013 |
+
if videos is not None:
|
| 1014 |
+
print("videos.shape", videos.shape)
|
| 1015 |
+
batch.insert(0, videos / 255.0)
|
| 1016 |
+
texts.insert(0, "videos")
|
| 1017 |
+
if need_controlnet and out_condition is not None:
|
| 1018 |
+
if not isinstance(out_condition, list):
|
| 1019 |
+
print("out_condition", out_condition.shape)
|
| 1020 |
+
batch.append(out_condition / 255.0)
|
| 1021 |
+
texts.append(controlnet_name)
|
| 1022 |
+
else:
|
| 1023 |
+
batch.extend([x / 255.0 for x in out_condition])
|
| 1024 |
+
texts.extend(controlnet_name)
|
| 1025 |
+
out = np.concatenate(batch, axis=0)
|
| 1026 |
+
save_videos_grid_with_opencv(
|
| 1027 |
+
out,
|
| 1028 |
+
output_path,
|
| 1029 |
+
texts=texts,
|
| 1030 |
+
fps=fps,
|
| 1031 |
+
tensor_order="b c t h w",
|
| 1032 |
+
n_cols=n_cols,
|
| 1033 |
+
write_info=args.write_info,
|
| 1034 |
+
save_filetype=save_filetype,
|
| 1035 |
+
save_images=save_images,
|
| 1036 |
+
)
|
| 1037 |
+
print("Save to", output_path)
|
| 1038 |
+
print("\n" * 2)
|
| 1039 |
+
return output_path
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
musev @ git+https://github.com/TMElyralab/MuseV.git@setup
|