andhikagg's picture
Upload app.py
df977ab verified
raw
history blame
13.3 kB
import os
import glob
import json
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
import sys
import io
import wave
from datetime import datetime
from fairseq import checkpoint_utils
from fairseq.data.dictionary import Dictionary
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
from config import Config
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
spaces = True
# Setup mode audio berdasarkan environment
if spaces:
audio_mode = ["Upload audio", "TTS Audio"]
else:
audio_mode = ["Input path", "Upload audio", "TTS Audio"]
# Setup metode F0
f0method_mode = ["pm", "harvest"]
f0method_info = "PM is fast, Harvest is good but can be slow on CPU."
if os.path.isfile("rmvpe.pt"):
f0method_mode.insert(2, "rmvpe")
f0method_info = "PM is fast, Harvest is good but slow on CPU, Rvmpe is a good alternative."
# Fungsi helper yang telah diperbaiki untuk memuat audio
def _load_audio_input(vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice, spaces_limit=20):
temp_file = None
if vc_audio_mode == "Input path" and vc_input:
print(f"Loading audio from path: {vc_input}")
audio, sr = librosa.load(vc_input, sr=16000, mono=True)
return audio, sr, None
if vc_audio_mode == "Upload audio":
if vc_upload is None:
raise ValueError("You need to upload an audio file.")
sampling_rate, audio = vc_upload
duration = len(audio) / sampling_rate
print(f"Loading uploaded audio. Original SR: {sampling_rate}, Duration: {duration:.2f}s")
if duration > spaces_limit and spaces:
raise ValueError(f"Audio is too long (> {spaces_limit}s). Please upload a shorter file.")
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
return audio, 16000, None
if vc_audio_mode == "TTS Audio":
if not tts_text or not tts_voice:
raise ValueError("You need to enter text and select a voice.")
if len(tts_text) > 100 and spaces:
raise ValueError("Text is too long (> 100 characters).")
temp_file = "tts.mp3"
print(f"Generating TTS audio for text: '{tts_text[:50]}...'")
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(temp_file))
audio, sr = librosa.load(temp_file, sr=16000, mono=True)
return audio, sr, temp_file
raise ValueError("Invalid audio mode or missing input.")
# Fungsi konversi utama yang sudah diperbaiki
def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
def vc_fn(
vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice,
f0_up_key, f0_method, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect,
):
logs = []
temp_audio_file = None
try:
logs.append(f"Converting using {model_name}...")
yield "\n".join(logs), None
audio, sr, temp_audio_file = _load_audio_input(
vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice
)
logs.append("Audio successfully loaded.")
logs.append(f"Starting RVC pipeline with F0 method: {f0_method}...")
yield "\n".join(logs), None
times = [0, 0, 0]
f0_up_key = int(f0_up_key)
audio_opt = vc.pipeline(
hubert_model, net_g, 0, audio, vc_input if vc_input else temp_audio_file,
times, f0_up_key, f0_method, file_index, index_rate,
if_f0, filter_radius, tgt_sr, resample_sr,
rms_mix_rate, version, protect, f0_file=None,
)
info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
print(f"{model_name} | {info}")
logs.append(f"Successfully Converted!\n{info}")
yield "\n".join(logs), (tgt_sr, audio_opt)
except Exception as e:
error_info = traceback.format_exc()
print(f"An error occurred: {error_info}")
return str(e), None
finally:
if temp_audio_file and os.path.exists(temp_audio_file):
os.remove(temp_audio_file)
return vc_fn
# Fungsi load model (tidak berubah)
def load_model():
categories = []
if os.path.isfile("weights/folder_info.json"):
with open("weights/folder_info.json", "r", encoding="utf-8") as f:
folder_info = json.load(f)
for category_name, category_info in folder_info.items():
if not category_info.get('enable', True):
continue
category_title, category_folder, description = category_info['title'], category_info['folder_path'], category_info['description']
models = []
with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for character_name, info in models_info.items():
if not info.get('enable', True):
continue
model_title, model_name, model_author = info['title'], info['model_path'], info.get("author")
model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) if if_f0 == 1 else SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) if if_f0 == 1 else SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
net_g = net_g.half() if config.is_half else net_g.float()
vc = VC(tgt_sr, config)
print(f"Model loaded: {character_name} ({version})")
models.append((character_name, model_title, model_author, model_cover, version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
categories.append([category_title, category_folder, description, models])
return categories
# Fungsi load Hubert (tidak berubah)
def load_hubert():
global hubert_model
torch.serialization.add_safe_globals([Dictionary])
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"], suffix="",)
hubert_model = models[0].to(config.device)
hubert_model = hubert_model.half() if config.is_half else hubert_model.float()
hubert_model.eval()
# Fungsi untuk mengubah UI berdasarkan mode audio (disederhanakan)
def change_audio_mode(vc_audio_mode):
is_input_path = vc_audio_mode == "Input path"
is_upload = vc_audio_mode == "Upload audio"
is_tts = vc_audio_mode == "TTS Audio"
return (
gr.Textbox.update(visible=is_input_path),
gr.Checkbox.update(visible=is_upload),
gr.Audio.update(visible=is_upload),
gr.Textbox.update(visible=is_tts),
gr.Dropdown.update(visible=is_tts)
)
def use_microphone(microphone):
return gr.Audio.update(source="microphone" if microphone else "upload")
if __name__ == '__main__':
load_hubert()
categories = load_model()
tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown("# RVC Blue Archive\n### Voice Conversion App")
if not categories:
gr.Markdown("## No model found. Please add models to the 'weights' folder.")
for (folder_title, folder, description, models) in categories:
with gr.TabItem(folder_title):
if description:
gr.Markdown(f"### <center>{description}</center>")
with gr.Tabs():
if not models:
gr.Markdown("## <center>No models loaded in this category.</center>")
continue
for (name, title, author, cover, model_version, vc_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
f'<div align="center">'
f'<div>{title}</div>\n'
f'<div>RVC {model_version} Model</div>\n'
+ (f'<div>Author: {author}</div>' if author else "")
+ (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")
+ '</div>'
)
with gr.Row():
with gr.Column():
vc_audio_mode = gr.Dropdown(label="Input Mode", choices=audio_mode, value="Upload audio")
vc_input = gr.Textbox(label="Input Audio Path", visible=False)
vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True)
vc_upload = gr.Audio(label="Upload Audio File", source="upload", visible=True)
tts_text = gr.Textbox(label="TTS Text", info="Text to speech input", visible=False)
tts_voice = gr.Dropdown(label="Edge-TTS Speaker", choices=voices, visible=False, value="en-US-AnaNeural-Female")
with gr.Column():
vc_transform0 = gr.Number(label="Transpose", value=0, info='e.g., 12 for male to female')
f0method0 = gr.Radio(label="Pitch Extraction Algorithm", info=f0method_info, choices=f0method_mode, value="pm")
index_rate1 = gr.Slider(minimum=0, maximum=1, label="Retrieval Feature Ratio", value=0.7)
filter_radius0 = gr.Slider(minimum=0, maximum=7, label="Median Filtering", value=3, step=1, info="Reduces breathiness")
resample_sr0 = gr.Slider(minimum=0, maximum=48000, label="Output Resample Rate", value=0, step=1, info="0 for no resampling")
rms_mix_rate0 = gr.Slider(minimum=0, maximum=1, label="Volume Envelope Ratio", value=1)
protect0 = gr.Slider(minimum=0, maximum=0.5, label="Voice Protection", value=0.5, step=0.01, info="Protects voiceless consonants")
with gr.Column():
vc_log = gr.Textbox(label="Output Information", interactive=False)
vc_output = gr.Audio(label="Output Audio", interactive=False)
vc_convert = gr.Button("Convert", variant="primary")
vc_convert.click(
fn=vc_fn,
inputs=[
vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice,
vc_transform0, f0method0, index_rate1, filter_radius0,
resample_sr0, rms_mix_rate0, protect0,
],
outputs=[vc_log, vc_output]
)
vc_audio_mode.change(
fn=change_audio_mode,
inputs=[vc_audio_mode],
outputs=[vc_input, vc_microphone_mode, vc_upload, tts_text, tts_voice]
)
vc_microphone_mode.change(
fn=use_microphone,
inputs=vc_microphone_mode,
outputs=vc_upload
)
app.queue(max_size=20).launch(share=False, server_name="0.0.0.0", server_port=7860)