import gradio as gr from transformers import T5ForConditionalGeneration, T5Tokenizer print("Đang tải model...") model_name = "tarudesu/ViHateT5-base-HSD" try: tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) print("Tải model thành công!") except Exception as e: print(f"Lỗi khi tải model: {e}") model = None def classify_vietnamese_text(text_to_check): if model is None or tokenizer is None: return "Lỗi: Model chưa được khởi tạo." input_text = f"hate-speech-detection: {text_to_check}" input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, max_length=10) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result demo = gr.Interface( fn=classify_vietnamese_text, inputs=gr.Textbox(lines=2, placeholder="Nhập câu Tiếng Việt cần kiểm tra ở đây..."), outputs="text", title="Vietnamese Hate Speech Detection", description="Một API demo cho model tarudesu/ViHateT5-base-HSD." ) demo.launch()