File size: 10,455 Bytes
7cb1242 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from flask import Flask, request, render_template, make_response
from flask_sqlalchemy import SQLAlchemy
from sentiment_model import preprocess_text, analyze_sentiment, read_file
from wordcloud import WordCloud
import os
import nltk
# Ensure NLTK uses a writable directory inside the container
NLTK_DIR = os.environ.get('NLTK_DATA', os.path.join(os.getcwd(), 'nltk_data'))
os.makedirs(NLTK_DIR, exist_ok=True)
if NLTK_DIR not in nltk.data.path:
nltk.data.path.insert(0, NLTK_DIR)
# Download required NLTK resources to the writable dir (no-op if present)
for pkg in ['punkt', 'punkt_tab', 'wordnet', 'averaged_perceptron_tagger']:
try:
nltk.download(pkg, download_dir=NLTK_DIR, quiet=True)
except Exception:
pass
app = Flask(__name__, static_folder='static')
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///sentiment_data.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db = SQLAlchemy(app)
# Define SentimentRecord model
class SentimentRecord(db.Model):
id = db.Column(db.Integer, primary_key=True)
original_text = db.Column(db.Text, nullable=False)
cleaned_text = db.Column(db.Text, nullable=False)
removed_text = db.Column(db.Text, nullable=False)
normalized_text = db.Column(db.Text, nullable=False)
tokenized_text = db.Column(db.Text, nullable=False)
stemmed_text = db.Column(db.Text, nullable=False)
lemmatized_text = db.Column(db.Text, nullable=False)
sentiment = db.Column(db.String(20), nullable=False)
ner = db.Column(db.Text, nullable=False)
pos = db.Column(db.Text, nullable=False)
with app.app_context():
db.create_all()
# Global variables to store the analysis result
analysis_result = {}
@app.route('/')
def home():
return render_template('index.html',
sentiment=None,
text=None,
file_uploaded=None,
model_type='default')
@app.route('/analyze', methods=['POST'])
def analyze():
global analysis_result # To store the results globally for the download
text = request.form.get('text', '').strip()
file = request.files.get('file')
model_type = request.form.get('model_type', 'default')
file_uploaded = False
if file and file.filename != '':
text = read_file(file)
file_uploaded = True
if not text or len(text.split()) < 4:
return render_template('index.html',
error='Please provide at least 4 words for analysis.',
text=text,
model_type=model_type,
file_uploaded=file_uploaded)
word_count = len(text.split())
if word_count > 300:
return render_template('index.html',
error='Input text exceeds the 300-word limit.',
text=text,
model_type=model_type,
file_uploaded=file_uploaded)
try:
# Step 1: Preprocess text (cleaning, normalization, etc.)
cleaned_text, removed_text, normalized_text, tokenized_text, stemmed_text, lemmatized_text, ner, pos = preprocess_text(text)
# Step 2: Use lemmatized text for sentiment analysis
lemmatized_text_joined = " ".join(lemmatized_text)
sentiment, probabilities = analyze_sentiment(lemmatized_text_joined, model_type=model_type)
# Word-level sentiment analysis
neutral_words, positive_words, negative_words = [], [], []
if model_type != 'emotion':
for word in lemmatized_text:
word_sentiment, _ = analyze_sentiment(word, model_type=model_type)
if word_sentiment == 'POSITIVE':
positive_words.append(word)
elif word_sentiment == 'NEGATIVE':
negative_words.append(word)
elif word_sentiment == 'NEUTRAL':
neutral_words.append(word)
word_sentiment_distribution = {
'positive': len(positive_words),
'neutral': len(neutral_words),
'negative': len(negative_words)
}
else:
# Emotion model word-level sentiment analysis
emotion_counters = {
'ANGER': 0, 'DISGUST': 0, 'FEAR': 0, 'JOY': 0, 'NEUTRAL': 0, 'SADNESS': 0, 'SURPRISE': 0
}
emotion_words = {
'ANGER': [], 'DISGUST': [], 'FEAR': [], 'JOY': [], 'NEUTRAL': [], 'SADNESS': [], 'SURPRISE': []
}
for word in lemmatized_text:
word_sentiment, _ = analyze_sentiment(word, model_type=model_type)
if word_sentiment in emotion_counters:
emotion_counters[word_sentiment] += 1
emotion_words[word_sentiment].append(word)
word_sentiment_distribution = {
'anger': emotion_counters['ANGER'],
'disgust': emotion_counters['DISGUST'],
'fear': emotion_counters['FEAR'],
'joy': emotion_counters['JOY'],
'neutral': emotion_counters['NEUTRAL'],
'sadness': emotion_counters['SADNESS'],
'surprise': emotion_counters['SURPRISE']
}
# Store the analysis result in global variable for download
analysis_result = {
'sentiment': sentiment,
'model_type': model_type,
'cleaned_text': cleaned_text,
'removed_text': removed_text,
'normalized_text': normalized_text,
'tokenized_text': tokenized_text,
'stemmed_text': stemmed_text,
'lemmatized_text': lemmatized_text,
'ner': ner,
'pos': pos,
'original_text': text,
'word_sentiment_distribution': word_sentiment_distribution,
'positive_words': positive_words,
'negative_words': negative_words,
'neutral_words': neutral_words if model_type != 'emotion' else [],
'emotion_words': emotion_words if model_type == 'emotion' else None
}
# Generate Word Cloud
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(lemmatized_text_joined)
wordcloud_path = os.path.join('static', 'wordcloud.png')
wordcloud.to_file(wordcloud_path)
return render_template('index.html',
sentiment=sentiment,
cleaned_text=cleaned_text,
removed_text=removed_text,
normalized_text=normalized_text,
tokenized_text=tokenized_text,
stemmed_text=" ".join(stemmed_text),
lemmatized_text=" ".join(lemmatized_text),
ner=ner,
pos=pos,
probabilities=probabilities,
wordcloud_url=wordcloud_path,
word_sentiment_distribution=word_sentiment_distribution,
positive_words=positive_words,
negative_words=negative_words,
neutral_words=neutral_words if model_type != 'emotion' else [],
emotion_words=emotion_words if model_type == 'emotion' else None,
text=text,
model_type=model_type,
total_words=len(tokenized_text),
file_uploaded=file_uploaded)
except Exception as e:
print(f"Error: {e}")
return render_template('index.html',
error='An error occurred during analysis.',
text=text,
model_type=model_type,
file_uploaded=file_uploaded)
@app.route('/download')
def download_result():
global analysis_result
try:
if not analysis_result:
return "No analysis available for download", 400
# Build content for the TXT file
content = f"""
Sentiment
Overall Sentiment: {analysis_result['sentiment']}
Model Used
Selected Model: {analysis_result['model_type']}
Original Text:
{analysis_result['original_text']}
Text Preprocessing Results
Cleaned Text:
{analysis_result['cleaned_text']}
Removed Text:
{analysis_result['removed_text']}
Normalized Text:
{analysis_result['normalized_text']}
Tokenized Text:
{', '.join(analysis_result['tokenized_text'])}
Stemmed Text:
{" ".join(analysis_result['stemmed_text'])}
Lemmatized Text:
{" ".join(analysis_result['lemmatized_text'])}
Named Entities (NER):
{', '.join([f"{entity[0]} ({entity[1]})" for entity in analysis_result['ner']])}
POS Tags:
{', '.join([f"{word} ({tag})" for word, tag in analysis_result['pos']])}
Total Words: {len(analysis_result['tokenized_text'])}
"""
# If the model is 'emotion', include emotion-based words
if analysis_result['model_type'] == 'emotion':
content += "\nEmotion-Specific Words:\n"
for emotion, words in analysis_result['emotion_words'].items():
content += f"{emotion.capitalize()} Words: {len(words)}\n"
content += f"{', '.join(words)}\n"
# Otherwise, include positive, neutral, and negative words for other models
else:
content += f"""
Positive Words: {len(analysis_result['positive_words'])}
{', '.join(analysis_result['positive_words'])}
Neutral Words: {len(analysis_result['neutral_words'])}
{', '.join(analysis_result['neutral_words'])}
Negative Words: {len(analysis_result['negative_words'])}
{', '.join(analysis_result['negative_words'])}
"""
# Create a response object with the content
response = make_response(content)
response.headers["Content-Disposition"] = "attachment; filename=sentiment_analysis_result.txt"
response.headers["Content-Type"] = "text/plain"
return response
except Exception as e:
print(f"Error during file download: {e}")
return "Error in generating file", 500
if __name__ == '__main__':
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port)
|