chore: adding the app
Browse files
app.py
CHANGED
|
@@ -1,7 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.append("../")
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
import gradio as gr
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
|
| 10 |
+
from src.utils.setup import seed_everything
|
| 11 |
+
from src.utils.logging import print_header
|
| 12 |
+
from src.model.pretrained import get_pretrained_loader
|
| 13 |
+
from src.model.load_model import load_and_convert_attns, load_and_convert_finetune
|
| 14 |
+
|
| 15 |
+
def load_model_from_checkpoint(
|
| 16 |
+
attn_mlp_checkpoint_path: str = None,
|
| 17 |
+
finetune_checkpoint_path: str = None,
|
| 18 |
+
model_config_path: str = None,
|
| 19 |
+
distill_config_path: str = None,
|
| 20 |
+
finetune_config_path: str = None,
|
| 21 |
+
config_dir: str = 'configs',
|
| 22 |
+
print_model: bool = False,
|
| 23 |
+
debug: bool = False,
|
| 24 |
+
huggingface_token: str = None,
|
| 25 |
+
use_cuda_kernels: bool = False,
|
| 26 |
+
use_attention: bool = False
|
| 27 |
+
):
|
| 28 |
+
|
| 29 |
+
is_local = attn_mlp_checkpoint_path.endswith(".pt")
|
| 30 |
+
|
| 31 |
+
model_config = OmegaConf.load(model_config_path)
|
| 32 |
+
distill_config = OmegaConf.load(distill_config_path)
|
| 33 |
+
finetune_config = OmegaConf.load(finetune_config_path)
|
| 34 |
+
|
| 35 |
+
model_loader = get_pretrained_loader(**model_config.model,
|
| 36 |
+
huggingface_token=huggingface_token)
|
| 37 |
+
tokenizer = model_loader.load_tokenizer()
|
| 38 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 39 |
+
tokenizer.padding_side = 'left'
|
| 40 |
+
if use_attention:
|
| 41 |
+
model = model_loader.load('softmax')
|
| 42 |
+
return model, model_config, tokenizer
|
| 43 |
+
|
| 44 |
+
model = model_loader.load(model_config['attention']['attention_type'])
|
| 45 |
+
if use_cuda_kernels:
|
| 46 |
+
print('*** Using TK CUDA kernels **')
|
| 47 |
+
model_config['attention']['attention_type'] = 'lolcats_llama_window_tk_gen'
|
| 48 |
+
|
| 49 |
+
if is_local:
|
| 50 |
+
checkpoint_path = attn_mlp_checkpoint_path
|
| 51 |
+
else:
|
| 52 |
+
checkpoint_path = None
|
| 53 |
+
model, distill_peft_config = load_and_convert_attns(
|
| 54 |
+
model, model_config,
|
| 55 |
+
attention_type=None,
|
| 56 |
+
checkpoint_path=checkpoint_path,
|
| 57 |
+
print_model=debug,
|
| 58 |
+
merge_loras=False,
|
| 59 |
+
peft_gradient_checkpointing=False,
|
| 60 |
+
train_attention=False)
|
| 61 |
+
|
| 62 |
+
if is_local:
|
| 63 |
+
checkpoint_path = attn_mlp_checkpoint_path
|
| 64 |
+
else:
|
| 65 |
+
checkpoint_path = None
|
| 66 |
+
model, ft_peft_config = load_and_convert_finetune(
|
| 67 |
+
model, finetune_config,
|
| 68 |
+
checkpoint_path=checkpoint_path,
|
| 69 |
+
print_model=debug,
|
| 70 |
+
merge_loras=False,
|
| 71 |
+
peft_gradient_checkpointing=False)
|
| 72 |
+
|
| 73 |
+
if not is_local:
|
| 74 |
+
model = load_hf_weights(
|
| 75 |
+
model,
|
| 76 |
+
attn_mlp_checkpoint_path, finetune_checkpoint_path,
|
| 77 |
+
filename="model.pt"
|
| 78 |
+
)
|
| 79 |
+
if use_cuda_kernels:
|
| 80 |
+
print('*** Using TK CUDA kernels ***')
|
| 81 |
+
|
| 82 |
+
if print_model:
|
| 83 |
+
print('*** Model after checkpoint load ***')
|
| 84 |
+
print(model)
|
| 85 |
+
|
| 86 |
+
return model, model_config, tokenizer
|
| 87 |
+
|
| 88 |
+
def load_hf_weights(model, distill_repo_id, ft_repo_id, filename="model.pt"):
|
| 89 |
+
for repo_id in [distill_repo_id, ft_repo_id]:
|
| 90 |
+
if repo_id is None: continue
|
| 91 |
+
|
| 92 |
+
print(f"Loading weights from {repo_id}")
|
| 93 |
+
|
| 94 |
+
local_file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 95 |
+
state_dict = torch.load(local_file_path)
|
| 96 |
+
if 'model_state_dict' in state_dict:
|
| 97 |
+
state_dict = state_dict['model_state_dict']
|
| 98 |
+
else:
|
| 99 |
+
pass
|
| 100 |
+
_keys = model.load_state_dict(state_dict, strict=False)
|
| 101 |
+
if len(_keys.unexpected_keys) > 0:
|
| 102 |
+
new_state_dict = {k.replace('model.', 'model.model.'): v for k, v in state_dict.items()}
|
| 103 |
+
_keys = model.load_state_dict(new_state_dict, strict=False)
|
| 104 |
+
if len(_keys.unexpected_keys) > 0:
|
| 105 |
+
new_state_dict = {k.replace('model.', 'base_model.model.model.'): v for k, v in state_dict.items()}
|
| 106 |
+
_keys = model.load_state_dict(new_state_dict, strict=False)
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
assert len(_keys.unexpected_keys) == 0
|
| 110 |
+
print('*** All expected keys matched successfully ***')
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(e)
|
| 113 |
+
print('*** Error: unexpected keys in checkpoint - please fix ***')
|
| 114 |
+
print('Unexpected keys:')
|
| 115 |
+
for k in _keys.unexpected_keys:
|
| 116 |
+
print(k)
|
| 117 |
+
exit()
|
| 118 |
+
|
| 119 |
+
return model
|
| 120 |
+
|
| 121 |
+
def load_model_and_tokenizer():
|
| 122 |
+
CONFIG_DIR = 'configs' # Update to your path
|
| 123 |
+
|
| 124 |
+
model_config_path = f"{CONFIG_DIR}/model/distill_llama3_1_8b_lk_smd_wtk64_fd64_w01.yaml"
|
| 125 |
+
distill_config_path = f"{CONFIG_DIR}/experiment/distill_alpaca_clean_xent0_mse1000_lr1e-2.yaml"
|
| 126 |
+
finetune_config_path = f"{CONFIG_DIR}/experiment/finetune_lora_qkvo_alpaca_clean.yaml"
|
| 127 |
+
attn_mlp_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-distill'
|
| 128 |
+
finetune_checkpoint_path = 'hazyresearch/lolcats-llama-3.1-8b-ft-lora'
|
| 129 |
+
|
| 130 |
+
model, model_config, tokenizer = load_model_from_checkpoint(
|
| 131 |
+
attn_mlp_checkpoint_path=attn_mlp_checkpoint_path,
|
| 132 |
+
finetune_checkpoint_path=finetune_checkpoint_path,
|
| 133 |
+
model_config_path=model_config_path,
|
| 134 |
+
distill_config_path=distill_config_path,
|
| 135 |
+
finetune_config_path=finetune_config_path,
|
| 136 |
+
config_dir=CONFIG_DIR,
|
| 137 |
+
print_model=False,
|
| 138 |
+
debug=False,
|
| 139 |
+
huggingface_token=None,
|
| 140 |
+
use_cuda_kernels=False,
|
| 141 |
+
use_attention=False
|
| 142 |
+
)
|
| 143 |
+
model = model.to('cuda')
|
| 144 |
+
model.eval()
|
| 145 |
+
return model, tokenizer
|
| 146 |
+
|
| 147 |
+
model, tokenizer = load_model_and_tokenizer()
|
| 148 |
+
|
| 149 |
+
def generate_response(prompt):
|
| 150 |
+
all_prompts = [prompt]
|
| 151 |
+
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
model_input = tokenizer(all_prompts, return_tensors="pt").to(model.device)
|
| 154 |
+
model_output = model.generate(
|
| 155 |
+
**model_input, use_cache=True,
|
| 156 |
+
max_new_tokens=50,
|
| 157 |
+
do_sample=False,
|
| 158 |
+
top_k=1,
|
| 159 |
+
top_p=1.0,
|
| 160 |
+
num_return_sequences=1,
|
| 161 |
+
pad_token_id=tokenizer.eos_token_id)
|
| 162 |
+
generated_tokens = model_output[0]
|
| 163 |
+
input_len = model_input['input_ids'].shape[1]
|
| 164 |
+
generated_tokens = generated_tokens[input_len:]
|
| 165 |
+
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 166 |
+
|
| 167 |
+
return generated_text
|
| 168 |
|
| 169 |
+
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="LOLcats Model Demo")
|
|
|
|
| 170 |
|
| 171 |
+
iface.launch()
|
|
|