Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| #from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| #from transformers import BertTokenizer, BertLMHeadModel | |
| # Load pre-trained model and tokenizer | |
| #tokenizer = BertTokenizer.from_pretrained('clinicalBERT') | |
| #model = BertLMHeadModel.from_pretrained('clinicalBERT') | |
| #from transformers import AutoTokenizer, AutoModel | |
| #tokenizer = AutoTokenizer.from_pretrained("medicalai/ClinicalBERT") | |
| #model = AutoModel.from_pretrained("medicalai/ClinicalBERT") | |
| #from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| #tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") | |
| #model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=2) | |
| import gradio as gr | |
| from transformers import pipeline | |
| # Carica il modello | |
| model = pipeline("text-generation", model="emilyalsentzer/Bio_ClinicalBERT") | |
| # Definisci la funzione per generare il testo | |
| def generate_text(prompt): | |
| return model(prompt, max_length=50)[0]['generated_text'] | |
| # Crea l'interfaccia | |
| interface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
| # Esempio di utilizzo del modello | |
| #inputs = tokenizer("Esempio di testo da classificare", return_tensors="pt") | |
| #outputs = model(**inputs) | |
| # Define a function to generate text using the model | |
| #def generate_text(input_text): | |
| # input_ids = tokenizer.encode(input_text, return_tensors='pt') | |
| # output = model.generate(input_ids) | |
| # return tokenizer.decode(output[0], skip_special_tokens=True) | |
| #interface = gr.Interface(fn=generate_text, inputs="text", outputs="text") | |
| interface.launch() | |