Spaces:
Running
on
Zero
Running
on
Zero
| import os.path | |
| import time | |
| import datetime | |
| from pytz import timezone | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from x_transformer import * | |
| import tqdm | |
| import TMIDIX | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| import matplotlib.pyplot as plt | |
| # ================================================================================================= | |
| def GenerateMIDI(num_tok, idrums, iinstr, input_align): | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = time.time() | |
| print('-' * 70) | |
| print('Req num tok:', num_tok) | |
| print('Req instr:', iinstr) | |
| print('Drums:', idrums) | |
| print('Align:', input_align) | |
| print('-' * 70) | |
| if idrums: | |
| drums = 3074 | |
| else: | |
| drums = 3073 | |
| instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums', | |
| "Choir", "Organ"] | |
| first_note_instrument_number = instruments_list.index(iinstr) | |
| start_tokens = [3087, drums, 3075 + first_note_instrument_number] | |
| print('Selected Improv sequence:') | |
| print(start_tokens) | |
| print('-' * 70) | |
| output = [] | |
| print('Loading model...') | |
| SEQ_LEN = 2048 | |
| # instantiate the model | |
| model = TransformerWrapper( | |
| num_tokens=3088, | |
| max_seq_len=SEQ_LEN, | |
| attn_layers=Decoder(dim=1024, depth=32, heads=8, attn_flash=True) | |
| ) | |
| model = AutoregressiveWrapper(model) | |
| model = torch.nn.DataParallel(model) | |
| model.cuda() | |
| print('=' * 70) | |
| print('Loading model checkpoint...') | |
| model.load_state_dict( | |
| torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth', | |
| map_location='cuda')) | |
| print('=' * 70) | |
| model.eval() | |
| print('Done!') | |
| print('=' * 70) | |
| print('Generating...') | |
| inp = torch.LongTensor([start_tokens]).cuda() | |
| with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16): | |
| with torch.inference_mode(): | |
| out = model.module.generate(inp, | |
| max(1, min(1024, num_tok)), | |
| temperature=0.9, | |
| return_prime=False, | |
| verbose=False) | |
| out0 = out[0].tolist() | |
| patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] | |
| ctime = 0 | |
| dur = 1 | |
| vel = 90 | |
| pitch = 60 | |
| channel = 0 | |
| for ss1 in out0: | |
| if 0 < ss1 < 256: | |
| ctime += ss1 * 8 | |
| if 256 <= ss1 < 1280: | |
| dur = ((ss1 - 256) // 8) * 32 | |
| vel = (((ss1 - 256) % 8) + 1) * 15 | |
| if 1280 <= ss1 < 2816: | |
| channel = (ss1 - 1280) // 128 | |
| pitch = (ss1 - 1280) % 128 | |
| if channel != 9: | |
| pat = patches[channel] | |
| else: | |
| pat = 128 | |
| event = ['note', ctime, dur, channel, pitch, vel, pat] | |
| output.append(event) | |
| if input_align == "Start Times": | |
| output = TMIDIX.recalculate_score_timings(output) | |
| output = TMIDIX.align_escore_notes_to_bars(output) | |
| elif input_align == "Start Times and Durations": | |
| output = TMIDIX.recalculate_score_timings(output) | |
| output = TMIDIX.align_escore_notes_to_bars(output, trim_durations=True) | |
| elif input_align == "Start Times and Split Durations": | |
| output = TMIDIX.recalculate_score_timings(output) | |
| output = TMIDIX.align_escore_notes_to_bars(output, split_durations=True) | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output, | |
| output_signature = 'Allegro Music Transformer', | |
| output_file_name = 'Allegro-Music-Transformer-Composition', | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| output_plot = TMIDIX.plot_ms_SONG(output, plot_title='Allegro-Music-Transformer-Composition', return_plt=True) | |
| audio = midi_to_colab_audio('Allegro-Music-Transformer-Composition.mid', | |
| soundfont_path="SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2", | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| print('First generated MIDI events', output[2][:3]) | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (time.time() - start_time), 'sec') | |
| return output_plot, "Allegro-Music-Transformer-Composition.mid", (16000, audio) | |
| # ================================================================================================= | |
| if __name__ == "__main__": | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>") | |
| gr.Markdown( | |
| "\n\n" | |
| "Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" | |
| "Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" | |
| "Special thanks go out to [SkyTNT](https://github.com/SkyTNT/midi-model) for fantastic FluidSynth Synthesizer and MIDI Visualizer code\n\n" | |
| "[Open In Colab]" | |
| "(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" | |
| " for faster execution and endless generation" | |
| ) | |
| input_instrument = gr.Radio( | |
| ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"], | |
| value="Piano", label="Lead Instrument Controls", info="Desired lead instrument") | |
| input_drums = gr.Checkbox(label="Add Drums", value=False, info="Add drums to the composition") | |
| input_align = gr.Radio(["Do not align", "Start Times", "Start Times and Durations", "Start Times and Split Durations"], label="Align output to bars", value="Do not align") | |
| input_num_tokens = gr.Slider(16, 1024, value=512, label="Number of Tokens", info="Number of tokens to generate") | |
| run_btn = gr.Button("generate", variant="primary") | |
| output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") | |
| output_plot = gr.Plot(label='output plot') | |
| output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
| run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument, input_align], | |
| [output_plot, output_midi, output_audio]) | |
| app.queue().launch() |