Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
5b360d1
1
Parent(s):
3dd0e68
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,7 +25,7 @@ def generate(
|
|
| 25 |
temperature = 0.9,
|
| 26 |
verbose=False,
|
| 27 |
return_prime=False,
|
| 28 |
-
):
|
| 29 |
|
| 30 |
out = torch.LongTensor([start_tokens])
|
| 31 |
|
|
@@ -34,29 +34,23 @@ def generate(
|
|
| 34 |
if verbose:
|
| 35 |
print("Generating sequence of max length:", seq_len)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
|
| 41 |
-
with bar:
|
| 42 |
-
while cur_len < max_len:
|
| 43 |
-
|
| 44 |
-
x = out[:, -max_seq_len:]
|
| 45 |
-
|
| 46 |
-
torch_in = x.tolist()[0]
|
| 47 |
-
|
| 48 |
-
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
|
| 49 |
-
|
| 50 |
-
filtered_logits = logits
|
| 51 |
-
|
| 52 |
-
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
| 53 |
-
|
| 54 |
-
sample = torch.multinomial(probs, 1)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
if return_prime:
|
| 62 |
return out[:, :]
|
|
|
|
| 25 |
temperature = 0.9,
|
| 26 |
verbose=False,
|
| 27 |
return_prime=False,
|
| 28 |
+
progress=gr.Progress()):
|
| 29 |
|
| 30 |
out = torch.LongTensor([start_tokens])
|
| 31 |
|
|
|
|
| 34 |
if verbose:
|
| 35 |
print("Generating sequence of max length:", seq_len)
|
| 36 |
|
| 37 |
+
progress(0, desc="Starting...")
|
| 38 |
+
|
| 39 |
+
for i in progress.tqdm(range(seq_len)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
x = out[:, -max_seq_len:]
|
| 42 |
+
|
| 43 |
+
torch_in = x.tolist()[0]
|
| 44 |
+
|
| 45 |
+
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
|
| 46 |
+
|
| 47 |
+
filtered_logits = logits
|
| 48 |
+
|
| 49 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
| 50 |
+
|
| 51 |
+
sample = torch.multinomial(probs, 1)
|
| 52 |
+
|
| 53 |
+
out = torch.cat((out, sample), dim=-1)
|
| 54 |
|
| 55 |
if return_prime:
|
| 56 |
return out[:, :]
|