Spaces:
Running
on
Zero
Running
on
Zero
| #======================================================================= | |
| # https://huggingface.co/spaces/asigalov61/Inpaint-Music-Transformer | |
| #======================================================================= | |
| import os.path | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| from x_transformer_1_23_2 import * | |
| import random | |
| import tqdm | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| import TMIDIX | |
| import matplotlib.pyplot as plt | |
| # ================================================================================================= | |
| def InpaintPitches(input_midi, input_num_of_notes, input_patch_number): | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = reqtime.time() | |
| print('Loading model...') | |
| SEQ_LEN = 8192 # Models seq len | |
| PAD_IDX = 19463 # Models pad index | |
| DEVICE = 'cuda' # 'cpu' | |
| # instantiate the model | |
| model = TransformerWrapper( | |
| num_tokens = PAD_IDX+1, | |
| max_seq_len = SEQ_LEN, | |
| attn_layers = Decoder(dim = 2048, depth = 8, heads = 32, attn_flash = True) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
| print('=' * 70) | |
| print('Loading model checkpoint...') | |
| model_checkpoint = hf_hub_download(repo_id='asigalov61/Giant-Music-Transformer', | |
| filename='Giant_Music_Transformer_Medium_Trained_Model_42174_steps_0.5211_loss_0.8542_acc.pth' | |
| ) | |
| model.load_state_dict(torch.load(kar_model_checkpoint, map_location='cpu', weights_only=True)) | |
| model = torch.compile(model, mode='max-autotune') | |
| print('=' * 70) | |
| model.to(DEVICE) | |
| model.eval() | |
| if DEVICE == 'cpu': | |
| dtype = torch.bfloat16 | |
| else: | |
| dtype = torch.bfloat16 | |
| ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
| print('Done!') | |
| print('=' * 70) | |
| fn = os.path.basename(input_midi.name) | |
| fn1 = fn.split('.')[0] | |
| input_num_of_notes = max(8, min(2048, input_num_of_notes)) | |
| print('-' * 70) | |
| print('Input file name:', fn) | |
| print('Req num of notes:', input_num_of_notes) | |
| print('Req patch number:', input_patch_number) | |
| print('-' * 70) | |
| #=============================================================================== | |
| raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
| #=============================================================================== | |
| # Enhanced score notes | |
| events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
| #======================================================= | |
| # PRE-PROCESSING | |
| # checking number of instruments in a composition | |
| instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9])) | |
| instruments_list = list(set([y[3] for y in events_matrix1])) | |
| if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0: | |
| #====================================== | |
| events_matrix2 = [] | |
| # Recalculating timings | |
| for e in events_matrix1: | |
| # Original timings | |
| e[1] = int(e[1] / 16) | |
| e[2] = int(e[2] / 16) | |
| #=================================== | |
| # ORIGINAL COMPOSITION | |
| #=================================== | |
| # Sorting by patch, pitch, then by start-time | |
| events_matrix1.sort(key=lambda x: x[6]) | |
| events_matrix1.sort(key=lambda x: x[4], reverse=True) | |
| events_matrix1.sort(key=lambda x: x[1]) | |
| #======================================================= | |
| # FINAL PROCESSING | |
| melody_chords = [] | |
| melody_chords2 = [] | |
| # Break between compositions / Intro seq | |
| if 9 in instruments_list: | |
| drums_present = 19331 # Yes | |
| else: | |
| drums_present = 19330 # No | |
| if events_matrix1[0][3] != 9: | |
| pat = events_matrix1[0][6] | |
| else: | |
| pat = 128 | |
| melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq | |
| #======================================================= | |
| # MAIN PROCESSING CYCLE | |
| #======================================================= | |
| abs_time = 0 | |
| pbar_time = 0 | |
| pe = events_matrix1[0] | |
| chords_counter = 1 | |
| comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) | |
| for e in events_matrix1: | |
| #======================================================= | |
| # Timings... | |
| # Cliping all values... | |
| delta_time = max(0, min(255, e[1]-pe[1])) | |
| # Durations and channels | |
| dur = max(0, min(255, e[2])) | |
| cha = max(0, min(15, e[3])) | |
| # Patches | |
| if cha == 9: # Drums patch will be == 128 | |
| pat = 128 | |
| else: | |
| pat = e[6] | |
| # Pitches | |
| ptc = max(1, min(127, e[4])) | |
| # Velocities | |
| # Calculating octo-velocity | |
| vel = max(8, min(127, e[5])) | |
| velocity = round(vel / 15)-1 | |
| #======================================================= | |
| # FINAL NOTE SEQ | |
| # Writing final note asynchronously | |
| dur_vel = (8 * dur) + velocity | |
| pat_ptc = (129 * pat) + ptc | |
| melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) | |
| melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) | |
| pe = e | |
| #================================================================== | |
| print('=' * 70) | |
| print('Number of tokens:', len(melody_chords)) | |
| print('Number of notes:', len(melody_chords2)) | |
| print('Sample output events', melody_chords[:5]) | |
| print('=' * 70) | |
| print('Generating...') | |
| #@title Pitches/Instruments Inpainting | |
| #@markdown You can stop the inpainting at any time to render partial results | |
| #@markdown Inpainting settings | |
| #@markdown Select MIDI patch present in the composition to inpaint | |
| inpaint_MIDI_patch = input_patch_number | |
| #@markdown Generation settings | |
| number_of_prime_notes = 24 | |
| number_of_memory_tokens = 1024 # @param {type:"slider", min:3, max:8190, step:3} | |
| number_of_samples_per_inpainted_note = 1 #@param {type:"slider", min:1, max:16, step:1} | |
| temperature = 0.85 | |
| print('=' * 70) | |
| print('Giant Music Transformer Inpainting Model Generator') | |
| print('=' * 70) | |
| #========================================================================== | |
| nidx = 0 | |
| first_inote = True | |
| fidx = 0 | |
| number_of_prime_tokens = number_of_prime_notes * 3 | |
| for i, m in enumerate(melody_chords): | |
| if 2304 <= melody_chords[i] < 18945: | |
| cpatch = (melody_chords[i]-2304) // 129 | |
| if cpatch == inpaint_MIDI_patch: | |
| nidx += 1 | |
| if first_inote: | |
| fidx += 1 | |
| if first_inote and fidx == number_of_prime_notes: | |
| number_of_prime_tokens = i | |
| first_inote = False | |
| if nidx == input_num_of_notes: | |
| break | |
| nidx = i | |
| #========================================================================== | |
| out2 = [] | |
| for m in melody_chords[:number_of_prime_tokens]: | |
| out2.append(m) | |
| for i in range(number_of_prime_tokens, len(melody_chords[:nidx])): | |
| cpatch = (melody_chords[i]-2304) // 129 | |
| if 2304 <= melody_chords[i] < 18945 and (cpatch) == inpaint_MIDI_patch: | |
| samples = [] | |
| for j in range(number_of_samples_per_inpainted_note): | |
| inp = torch.LongTensor(out2[-number_of_memory_tokens:]).cuda() | |
| with ctx: | |
| out1 = model.generate(inp, | |
| 1, | |
| temperature=temperature, | |
| return_prime=True, | |
| verbose=False) | |
| with torch.no_grad(): | |
| test_loss, test_acc = model(out1) | |
| samples.append([out1.tolist()[0][-1], test_acc.tolist()]) | |
| accs = [y[1] for y in samples] | |
| max_acc = max(accs) | |
| max_acc_sample = samples[accs.index(max_acc)][0] | |
| cpitch = (max_acc_sample-2304) % 129 | |
| out2.extend([((cpatch * 129) + cpitch)+2304]) | |
| else: | |
| out2.append(melody_chords[i]) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #=============================================================================== | |
| print('Rendering results...') | |
| print('=' * 70) | |
| print('Sample INTs', out2[:12]) | |
| print('=' * 70) | |
| if len(out2) != 0: | |
| song = out2 | |
| song_f = [] | |
| time = 0 | |
| dur = 0 | |
| vel = 90 | |
| pitch = 0 | |
| channel = 0 | |
| patches = [-1] * 16 | |
| channels = [0] * 16 | |
| channels[9] = 1 | |
| for ss in song: | |
| if 0 <= ss < 256: | |
| time += ss * 16 | |
| if 256 <= ss < 2304: | |
| dur = ((ss-256) // 8) * 16 | |
| vel = (((ss-256) % 8)+1) * 15 | |
| if 2304 <= ss < 18945: | |
| patch = (ss-2304) // 129 | |
| if patch < 128: | |
| if patch not in patches: | |
| if 0 in channels: | |
| cha = channels.index(0) | |
| channels[cha] = 1 | |
| else: | |
| cha = 15 | |
| patches[cha] = patch | |
| channel = patches.index(patch) | |
| else: | |
| channel = patches.index(patch) | |
| if patch == 128: | |
| channel = 9 | |
| pitch = (ss-2304) % 129 | |
| song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
| patches = [0 if x==-1 else x for x in patches] | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
| output_signature = 'Giant Music Transformer', | |
| output_file_name = fn1, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| new_fn = fn1+'.mid' | |
| audio = midi_to_colab_audio(new_fn, | |
| soundfont_path=soundfont, | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| print('Done!') | |
| print('=' * 70) | |
| #======================================================== | |
| output_midi_title = str(fn1) | |
| output_midi_summary = str(song_f[:3]) | |
| output_midi = str(new_fn) | |
| output_audio = (16000, audio) | |
| output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
| print('Output MIDI file name:', output_midi) | |
| print('Output MIDI title:', output_midi_title) | |
| print('Output MIDI summary:', output_midi_summary) | |
| print('=' * 70) | |
| #======================================================== | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
| return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
| # ================================================================================================= | |
| if __name__ == "__main__": | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
| app = gr.Blocks() | |
| with app: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Inpaint Music Transformer</h1>") | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Inpaint pitches in any MIDI</h1>") | |
| gr.Markdown( | |
| "\n\n" | |
| "This is a demo of the Giant Music Transformer pitches inpainting feature\n\n" | |
| "Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n" | |
| "[Open In Colab]" | |
| "(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)" | |
| " for all features, faster execution and endless generation" | |
| ) | |
| gr.Markdown("## Upload your MIDI or select a sample example MIDI below") | |
| input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
| input_num_of_notes = gr.Slider(8, 2048, value=128, step=8, label="Number of composition notes to inpaint") | |
| input_patch_number = gr.Slider(0, 127, value=0, step=1, label="Composition MIDI patch to inpaint") | |
| run_btn = gr.Button("inpaint", variant="primary") | |
| gr.Markdown("## Inpainting results") | |
| output_midi_title = gr.Textbox(label="Output MIDI title") | |
| output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
| output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
| output_plot = gr.Plot(label="Output MIDI score plot") | |
| output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
| run_event = run_btn.click(InpaintPitches, [input_midi, input_num_of_notes, input_patch_number], | |
| [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
| gr.Examples( | |
| [["Giant-Music-Transformer-Piano-Seed-1.mid", 128, 0], | |
| ["Giant-Music-Transformer-Piano-Seed-2.mid", 128, 0], | |
| ["Giant-Music-Transformer-Piano-Seed-3.mid", 128, 0], | |
| ["Giant-Music-Transformer-Piano-Seed-4.mid", 128, 0], | |
| ["Giant-Music-Transformer-Piano-Seed-5.mid", 128, 2], | |
| ["Giant-Music-Transformer-Piano-Seed-6.mid", 128, 0], | |
| ["Giant-Music-Transformer-MI-Seed-1.mid", 128, 71], | |
| ["Giant-Music-Transformer-MI-Seed-2.mid", 128, 40], | |
| ["Giant-Music-Transformer-MI-Seed-3.mid", 128, 40], | |
| ["Giant-Music-Transformer-MI-Seed-4.mid", 128, 40], | |
| ["Giant-Music-Transformer-MI-Seed-5.mid", 128, 40], | |
| ["Giant-Music-Transformer-MI-Seed-6.mid", 128, 0] | |
| ], | |
| [input_midi, input_num_of_notes, input_patch_number], | |
| [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], | |
| InpaintPitches | |
| ) | |
| app.queue().launch() |