Spaces:
Running
Running
fix demo changes
Browse files- geometry_utils.py +1 -1
- transform3d.py +915 -0
geometry_utils.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transform3d import transform_body_pose, apply_rot_delta,
|
| 3 |
|
| 4 |
def diffout2motion(diffout, normalizer):
|
| 5 |
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transform3d import transform_body_pose, apply_rot_delta, get_z_rot, change_for
|
| 3 |
|
| 4 |
def diffout2motion(diffout, normalizer):
|
| 5 |
|
transform3d.py
ADDED
|
@@ -0,0 +1,915 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from einops import rearrange
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import Tensor
|
| 5 |
+
from roma import rotmat_to_rotvec, rotvec_to_rotmat
|
| 6 |
+
from torch.nn.functional import pad
|
| 7 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
| 8 |
+
# Check PYTORCH3D_LICENCE before use
|
| 9 |
+
|
| 10 |
+
import functools
|
| 11 |
+
from typing import Optional
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
import numpy as np
|
| 16 |
+
import torch
|
| 17 |
+
from einops import rearrange
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def rotate_trajectory(traj, rotZ, inverse=False):
|
| 21 |
+
'''
|
| 22 |
+
Rotate the trajectory of a given body
|
| 23 |
+
'''
|
| 24 |
+
if inverse:
|
| 25 |
+
# transpose
|
| 26 |
+
rotZ = rearrange(rotZ, "... i j -> ... j i")
|
| 27 |
+
|
| 28 |
+
vel = torch.diff(traj, dim=-2)
|
| 29 |
+
# 0 for the first one => keep the dimentionality
|
| 30 |
+
vel = torch.cat((0 * vel[..., [0], :], vel), dim=-2)
|
| 31 |
+
vel_local = torch.einsum("...kj,...k->...j", rotZ[..., :2, :2], vel[..., :2])
|
| 32 |
+
# Integrate the trajectory
|
| 33 |
+
traj_local = torch.cumsum(vel_local, dim=-2)
|
| 34 |
+
# First frame should be the same as before
|
| 35 |
+
traj_local = traj_local - traj_local[..., [0], :] + traj[..., [0], :]
|
| 36 |
+
return traj_local
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def rotate_trans(trans, rotZ, inverse=False):
|
| 40 |
+
'''
|
| 41 |
+
Rotate the translation of a given body
|
| 42 |
+
'''
|
| 43 |
+
|
| 44 |
+
traj = trans[..., :2]
|
| 45 |
+
transZ = trans[..., 2]
|
| 46 |
+
traj_local = rotate_trajectory(traj, rotZ, inverse=inverse)
|
| 47 |
+
trans_local = torch.cat((traj_local, transZ[..., None]), axis=-1)
|
| 48 |
+
return trans_local
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def rotate_body_canonic(rots, trans, offset=0.0):
|
| 52 |
+
|
| 53 |
+
'''
|
| 54 |
+
Rotate the whole body
|
| 55 |
+
'''
|
| 56 |
+
|
| 57 |
+
# rots, trans = data.rots.clone(), data.trans.clone()
|
| 58 |
+
global_poses = rots[..., 0, :, :]
|
| 59 |
+
global_euler = matrix_to_euler_angles(global_poses, "ZYX")
|
| 60 |
+
anglesZ, anglesY, anglesX = torch.unbind(global_euler, -1)
|
| 61 |
+
rotZ = _axis_angle_rotation("Z", anglesZ)
|
| 62 |
+
|
| 63 |
+
diff_mat_rotZ = rotZ[..., 1:, :, :] @ rotZ.transpose(-1, -2)[..., :-1, :, :]
|
| 64 |
+
vel_anglesZ = matrix_to_axis_angle(diff_mat_rotZ)[..., 2]
|
| 65 |
+
# padding "same"
|
| 66 |
+
vel_anglesZ = torch.cat((vel_anglesZ[..., [0]], vel_anglesZ), dim=-1)
|
| 67 |
+
# canonicalizing here
|
| 68 |
+
new_anglesZ = torch.cumsum(vel_anglesZ, -1) + offset
|
| 69 |
+
new_rotZ = _axis_angle_rotation("Z", new_anglesZ)
|
| 70 |
+
|
| 71 |
+
new_global_euler = torch.stack((new_anglesZ, anglesY, anglesX), -1)
|
| 72 |
+
new_global_orient = euler_angles_to_matrix(new_global_euler, "ZYX")
|
| 73 |
+
|
| 74 |
+
rots[:, 0] = new_global_orient
|
| 75 |
+
trans = rotate_trans(trans, rotZ[0], inverse=False)
|
| 76 |
+
trans = rotate_trans(trans, new_rotZ[0], inverse=True)
|
| 77 |
+
# trans = rotate_trans(trans, rotZ[0], inverse=True)
|
| 78 |
+
|
| 79 |
+
# from sinc.transforms.smpl import RotTransDatastruct
|
| 80 |
+
# return RotTransDatastruct(rots=rots, trans=trans)
|
| 81 |
+
return rots, trans
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
"""
|
| 89 |
+
The transformation matrices returned from the functions in this file assume
|
| 90 |
+
the points on which the transformation will be applied are column vectors.
|
| 91 |
+
i.e. the R matrix is structured as
|
| 92 |
+
|
| 93 |
+
R = [
|
| 94 |
+
[Rxx, Rxy, Rxz],
|
| 95 |
+
[Ryx, Ryy, Ryz],
|
| 96 |
+
[Rzx, Rzy, Rzz],
|
| 97 |
+
] # (3, 3)
|
| 98 |
+
|
| 99 |
+
This matrix can be applied to column vectors by post multiplication
|
| 100 |
+
by the points e.g.
|
| 101 |
+
|
| 102 |
+
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point
|
| 103 |
+
transformed_points = R * points
|
| 104 |
+
|
| 105 |
+
To apply the same matrix to points which are row vectors, the R matrix
|
| 106 |
+
can be transposed and pre multiplied by the points:
|
| 107 |
+
|
| 108 |
+
e.g.
|
| 109 |
+
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point
|
| 110 |
+
transformed_points = points * R.transpose(1, 0)
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Added
|
| 115 |
+
def matrix_of_angles(cos, sin, inv=False, dim=2):
|
| 116 |
+
assert dim in [2, 3]
|
| 117 |
+
sin = -sin if inv else sin
|
| 118 |
+
if dim == 2:
|
| 119 |
+
row1 = torch.stack((cos, -sin), axis=-1)
|
| 120 |
+
row2 = torch.stack((sin, cos), axis=-1)
|
| 121 |
+
return torch.stack((row1, row2), axis=-2)
|
| 122 |
+
elif dim == 3:
|
| 123 |
+
row1 = torch.stack((cos, -sin, 0*cos), axis=-1)
|
| 124 |
+
row2 = torch.stack((sin, cos, 0*cos), axis=-1)
|
| 125 |
+
row3 = torch.stack((0*sin, 0*cos, 1+0*cos), axis=-1)
|
| 126 |
+
return torch.stack((row1, row2, row3),axis=-2)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def quaternion_to_matrix(quaternions):
|
| 130 |
+
"""
|
| 131 |
+
Convert rotations given as quaternions to rotation matrices.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
quaternions: quaternions with real part first,
|
| 135 |
+
as tensor of shape (..., 4).
|
| 136 |
+
|
| 137 |
+
Returns:
|
| 138 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 139 |
+
"""
|
| 140 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
| 141 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
| 142 |
+
|
| 143 |
+
o = torch.stack(
|
| 144 |
+
(
|
| 145 |
+
1 - two_s * (j * j + k * k),
|
| 146 |
+
two_s * (i * j - k * r),
|
| 147 |
+
two_s * (i * k + j * r),
|
| 148 |
+
two_s * (i * j + k * r),
|
| 149 |
+
1 - two_s * (i * i + k * k),
|
| 150 |
+
two_s * (j * k - i * r),
|
| 151 |
+
two_s * (i * k - j * r),
|
| 152 |
+
two_s * (j * k + i * r),
|
| 153 |
+
1 - two_s * (i * i + j * j),
|
| 154 |
+
),
|
| 155 |
+
-1,
|
| 156 |
+
)
|
| 157 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def _copysign(a, b):
|
| 161 |
+
"""
|
| 162 |
+
Return a tensor where each element has the absolute value taken from the,
|
| 163 |
+
corresponding element of a, with sign taken from the corresponding
|
| 164 |
+
element of b. This is like the standard copysign floating-point operation,
|
| 165 |
+
but is not careful about negative 0 and NaN.
|
| 166 |
+
|
| 167 |
+
Args:
|
| 168 |
+
a: source tensor.
|
| 169 |
+
b: tensor whose signs will be used, of the same shape as a.
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
Tensor of the same shape as a with the signs of b.
|
| 173 |
+
"""
|
| 174 |
+
signs_differ = (a < 0) != (b < 0)
|
| 175 |
+
return torch.where(signs_differ, -a, a)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def _sqrt_positive_part(x):
|
| 179 |
+
"""
|
| 180 |
+
Returns torch.sqrt(torch.max(0, x))
|
| 181 |
+
but with a zero subgradient where x is 0.
|
| 182 |
+
"""
|
| 183 |
+
ret = torch.zeros_like(x)
|
| 184 |
+
positive_mask = x > 0
|
| 185 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
| 186 |
+
return ret
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def matrix_to_quaternion(matrix):
|
| 190 |
+
"""
|
| 191 |
+
Convert rotations given as rotation matrices to quaternions.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
| 195 |
+
|
| 196 |
+
Returns:
|
| 197 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
| 198 |
+
"""
|
| 199 |
+
if isinstance(matrix, np.ndarray):
|
| 200 |
+
matrix = torch.from_numpy(matrix)
|
| 201 |
+
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3:
|
| 202 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
| 203 |
+
m00 = matrix[..., 0, 0]
|
| 204 |
+
m11 = matrix[..., 1, 1]
|
| 205 |
+
m22 = matrix[..., 2, 2]
|
| 206 |
+
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
|
| 207 |
+
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
|
| 208 |
+
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
|
| 209 |
+
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
|
| 210 |
+
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
|
| 211 |
+
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
|
| 212 |
+
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
|
| 213 |
+
return torch.stack((o0, o1, o2, o3), -1)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def _axis_angle_rotation(axis: str, angle):
|
| 217 |
+
"""
|
| 218 |
+
Return the rotation matrices for one of the rotations about an axis
|
| 219 |
+
of which Euler angles describe, for each value of the angle given.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
axis: Axis label "X" or "Y or "Z".
|
| 223 |
+
angle: any shape tensor of Euler angles in radians
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
cos = torch.cos(angle)
|
| 230 |
+
sin = torch.sin(angle)
|
| 231 |
+
one = torch.ones_like(angle)
|
| 232 |
+
zero = torch.zeros_like(angle)
|
| 233 |
+
|
| 234 |
+
if axis == "X":
|
| 235 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
| 236 |
+
if axis == "Y":
|
| 237 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
| 238 |
+
if axis == "Z":
|
| 239 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
| 240 |
+
|
| 241 |
+
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def euler_angles_to_matrix(euler_angles, convention: str):
|
| 245 |
+
"""
|
| 246 |
+
Convert rotations given as Euler angles in radians to rotation matrices.
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
euler_angles: Euler angles in radians as tensor of shape (..., 3).
|
| 250 |
+
convention: Convention string of three uppercase letters from
|
| 251 |
+
{"X", "Y", and "Z"}.
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 255 |
+
"""
|
| 256 |
+
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
|
| 257 |
+
raise ValueError("Invalid input euler angles.")
|
| 258 |
+
if len(convention) != 3:
|
| 259 |
+
raise ValueError("Convention must have 3 letters.")
|
| 260 |
+
if convention[1] in (convention[0], convention[2]):
|
| 261 |
+
raise ValueError(f"Invalid convention {convention}.")
|
| 262 |
+
for letter in convention:
|
| 263 |
+
if letter not in ("X", "Y", "Z"):
|
| 264 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
| 265 |
+
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
|
| 266 |
+
return functools.reduce(torch.matmul, matrices)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def _angle_from_tan(
|
| 270 |
+
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
|
| 271 |
+
):
|
| 272 |
+
"""
|
| 273 |
+
Extract the first or third Euler angle from the two members of
|
| 274 |
+
the matrix which are positive constant times its sine and cosine.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
axis: Axis label "X" or "Y or "Z" for the angle we are finding.
|
| 278 |
+
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
|
| 279 |
+
convention.
|
| 280 |
+
data: Rotation matrices as tensor of shape (..., 3, 3).
|
| 281 |
+
horizontal: Whether we are looking for the angle for the third axis,
|
| 282 |
+
which means the relevant entries are in the same row of the
|
| 283 |
+
rotation matrix. If not, they are in the same column.
|
| 284 |
+
tait_bryan: Whether the first and third axes in the convention differ.
|
| 285 |
+
|
| 286 |
+
Returns:
|
| 287 |
+
Euler Angles in radians for each matrix in data as a tensor
|
| 288 |
+
of shape (...).
|
| 289 |
+
"""
|
| 290 |
+
|
| 291 |
+
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
|
| 292 |
+
if horizontal:
|
| 293 |
+
i2, i1 = i1, i2
|
| 294 |
+
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
|
| 295 |
+
if horizontal == even:
|
| 296 |
+
return torch.atan2(data[..., i1], data[..., i2])
|
| 297 |
+
if tait_bryan:
|
| 298 |
+
return torch.atan2(-data[..., i2], data[..., i1])
|
| 299 |
+
return torch.atan2(data[..., i2], -data[..., i1])
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def _index_from_letter(letter: str):
|
| 303 |
+
if letter == "X":
|
| 304 |
+
return 0
|
| 305 |
+
if letter == "Y":
|
| 306 |
+
return 1
|
| 307 |
+
if letter == "Z":
|
| 308 |
+
return 2
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def matrix_to_euler_angles(matrix, convention: str):
|
| 312 |
+
"""
|
| 313 |
+
Convert rotations given as rotation matrices to Euler angles in radians.
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
| 317 |
+
convention: Convention string of three uppercase letters.
|
| 318 |
+
|
| 319 |
+
Returns:
|
| 320 |
+
Euler angles in radians as tensor of shape (..., 3).
|
| 321 |
+
"""
|
| 322 |
+
if len(convention) != 3:
|
| 323 |
+
raise ValueError("Convention must have 3 letters.")
|
| 324 |
+
if convention[1] in (convention[0], convention[2]):
|
| 325 |
+
raise ValueError(f"Invalid convention {convention}.")
|
| 326 |
+
for letter in convention:
|
| 327 |
+
if letter not in ("X", "Y", "Z"):
|
| 328 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
| 329 |
+
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3:
|
| 330 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
| 331 |
+
i0 = _index_from_letter(convention[0])
|
| 332 |
+
i2 = _index_from_letter(convention[2])
|
| 333 |
+
tait_bryan = i0 != i2
|
| 334 |
+
if tait_bryan:
|
| 335 |
+
central_angle = torch.asin(
|
| 336 |
+
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
|
| 337 |
+
)
|
| 338 |
+
else:
|
| 339 |
+
central_angle = torch.acos(matrix[..., i0, i0])
|
| 340 |
+
|
| 341 |
+
o = (
|
| 342 |
+
_angle_from_tan(
|
| 343 |
+
convention[0], convention[1], matrix[..., i2], False, tait_bryan
|
| 344 |
+
),
|
| 345 |
+
central_angle,
|
| 346 |
+
_angle_from_tan(
|
| 347 |
+
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
|
| 348 |
+
),
|
| 349 |
+
)
|
| 350 |
+
return torch.stack(o, -1)
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
def random_quaternions(
|
| 354 |
+
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
| 355 |
+
):
|
| 356 |
+
"""
|
| 357 |
+
Generate random quaternions representing rotations,
|
| 358 |
+
i.e. versors with nonnegative real part.
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
n: Number of quaternions in a batch to return.
|
| 362 |
+
dtype: Type to return.
|
| 363 |
+
device: Desired device of returned tensor. Default:
|
| 364 |
+
uses the current device for the default tensor type.
|
| 365 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
| 366 |
+
flag set.
|
| 367 |
+
|
| 368 |
+
Returns:
|
| 369 |
+
Quaternions as tensor of shape (N, 4).
|
| 370 |
+
"""
|
| 371 |
+
o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad)
|
| 372 |
+
s = (o * o).sum(1)
|
| 373 |
+
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None]
|
| 374 |
+
return o
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def random_rotations(
|
| 378 |
+
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
| 379 |
+
):
|
| 380 |
+
"""
|
| 381 |
+
Generate random rotations as 3x3 rotation matrices.
|
| 382 |
+
|
| 383 |
+
Args:
|
| 384 |
+
n: Number of rotation matrices in a batch to return.
|
| 385 |
+
dtype: Type to return.
|
| 386 |
+
device: Device of returned tensor. Default: if None,
|
| 387 |
+
uses the current device for the default tensor type.
|
| 388 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
| 389 |
+
flag set.
|
| 390 |
+
|
| 391 |
+
Returns:
|
| 392 |
+
Rotation matrices as tensor of shape (n, 3, 3).
|
| 393 |
+
"""
|
| 394 |
+
quaternions = random_quaternions(
|
| 395 |
+
n, dtype=dtype, device=device, requires_grad=requires_grad
|
| 396 |
+
)
|
| 397 |
+
return quaternion_to_matrix(quaternions)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def random_rotation(
|
| 401 |
+
dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
| 402 |
+
):
|
| 403 |
+
"""
|
| 404 |
+
Generate a single random 3x3 rotation matrix.
|
| 405 |
+
|
| 406 |
+
Args:
|
| 407 |
+
dtype: Type to return
|
| 408 |
+
device: Device of returned tensor. Default: if None,
|
| 409 |
+
uses the current device for the default tensor type
|
| 410 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
| 411 |
+
flag set
|
| 412 |
+
|
| 413 |
+
Returns:
|
| 414 |
+
Rotation matrix as tensor of shape (3, 3).
|
| 415 |
+
"""
|
| 416 |
+
return random_rotations(1, dtype, device, requires_grad)[0]
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def standardize_quaternion(quaternions):
|
| 420 |
+
"""
|
| 421 |
+
Convert a unit quaternion to a standard form: one in which the real
|
| 422 |
+
part is non negative.
|
| 423 |
+
|
| 424 |
+
Args:
|
| 425 |
+
quaternions: Quaternions with real part first,
|
| 426 |
+
as tensor of shape (..., 4).
|
| 427 |
+
|
| 428 |
+
Returns:
|
| 429 |
+
Standardized quaternions as tensor of shape (..., 4).
|
| 430 |
+
"""
|
| 431 |
+
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
def quaternion_raw_multiply(a, b):
|
| 435 |
+
"""
|
| 436 |
+
Multiply two quaternions.
|
| 437 |
+
Usual torch rules for broadcasting apply.
|
| 438 |
+
|
| 439 |
+
Args:
|
| 440 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
| 441 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
| 442 |
+
|
| 443 |
+
Returns:
|
| 444 |
+
The product of a and b, a tensor of quaternions shape (..., 4).
|
| 445 |
+
"""
|
| 446 |
+
aw, ax, ay, az = torch.unbind(a, -1)
|
| 447 |
+
bw, bx, by, bz = torch.unbind(b, -1)
|
| 448 |
+
ow = aw * bw - ax * bx - ay * by - az * bz
|
| 449 |
+
ox = aw * bx + ax * bw + ay * bz - az * by
|
| 450 |
+
oy = aw * by - ax * bz + ay * bw + az * bx
|
| 451 |
+
oz = aw * bz + ax * by - ay * bx + az * bw
|
| 452 |
+
return torch.stack((ow, ox, oy, oz), -1)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def quaternion_multiply(a, b):
|
| 456 |
+
"""
|
| 457 |
+
Multiply two quaternions representing rotations, returning the quaternion
|
| 458 |
+
representing their composition, i.e. the versor with nonnegative real part.
|
| 459 |
+
Usual torch rules for broadcasting apply.
|
| 460 |
+
|
| 461 |
+
Args:
|
| 462 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
| 463 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
| 464 |
+
|
| 465 |
+
Returns:
|
| 466 |
+
The product of a and b, a tensor of quaternions of shape (..., 4).
|
| 467 |
+
"""
|
| 468 |
+
ab = quaternion_raw_multiply(a, b)
|
| 469 |
+
return standardize_quaternion(ab)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def quaternion_invert(quaternion):
|
| 473 |
+
"""
|
| 474 |
+
Given a quaternion representing rotation, get the quaternion representing
|
| 475 |
+
its inverse.
|
| 476 |
+
|
| 477 |
+
Args:
|
| 478 |
+
quaternion: Quaternions as tensor of shape (..., 4), with real part
|
| 479 |
+
first, which must be versors (unit quaternions).
|
| 480 |
+
|
| 481 |
+
Returns:
|
| 482 |
+
The inverse, a tensor of quaternions of shape (..., 4).
|
| 483 |
+
"""
|
| 484 |
+
|
| 485 |
+
return quaternion * quaternion.new_tensor([1, -1, -1, -1])
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def quaternion_apply(quaternion, point):
|
| 489 |
+
"""
|
| 490 |
+
Apply the rotation given by a quaternion to a 3D point.
|
| 491 |
+
Usual torch rules for broadcasting apply.
|
| 492 |
+
|
| 493 |
+
Args:
|
| 494 |
+
quaternion: Tensor of quaternions, real part first, of shape (..., 4).
|
| 495 |
+
point: Tensor of 3D points of shape (..., 3).
|
| 496 |
+
|
| 497 |
+
Returns:
|
| 498 |
+
Tensor of rotated points of shape (..., 3).
|
| 499 |
+
"""
|
| 500 |
+
if point.shape[-1] != 3:
|
| 501 |
+
raise ValueError(f"Points are not in 3D, f{point.shape}.")
|
| 502 |
+
real_parts = point.new_zeros(point.shape[:-1] + (1,))
|
| 503 |
+
point_as_quaternion = torch.cat((real_parts, point), -1)
|
| 504 |
+
out = quaternion_raw_multiply(
|
| 505 |
+
quaternion_raw_multiply(quaternion, point_as_quaternion),
|
| 506 |
+
quaternion_invert(quaternion),
|
| 507 |
+
)
|
| 508 |
+
return out[..., 1:]
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
def axis_angle_to_matrix(axis_angle):
|
| 512 |
+
"""
|
| 513 |
+
Convert rotations given as axis/angle to rotation matrices.
|
| 514 |
+
|
| 515 |
+
Args:
|
| 516 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
| 517 |
+
as a tensor of shape (..., 3), where the magnitude is
|
| 518 |
+
the angle turned anticlockwise in radians around the
|
| 519 |
+
vector's direction.
|
| 520 |
+
|
| 521 |
+
Returns:
|
| 522 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 523 |
+
"""
|
| 524 |
+
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
def matrix_to_axis_angle(matrix):
|
| 528 |
+
"""
|
| 529 |
+
Convert rotations given as rotation matrices to axis/angle.
|
| 530 |
+
|
| 531 |
+
Args:
|
| 532 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
| 533 |
+
|
| 534 |
+
Returns:
|
| 535 |
+
Rotations given as a vector in axis angle form, as a tensor
|
| 536 |
+
of shape (..., 3), where the magnitude is the angle
|
| 537 |
+
turned anticlockwise in radians around the vector's
|
| 538 |
+
direction.
|
| 539 |
+
"""
|
| 540 |
+
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
def axis_angle_to_quaternion(axis_angle):
|
| 544 |
+
"""
|
| 545 |
+
Convert rotations given as axis/angle to quaternions.
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
| 549 |
+
as a tensor of shape (..., 3), where the magnitude is
|
| 550 |
+
the angle turned anticlockwise in radians around the
|
| 551 |
+
vector's direction.
|
| 552 |
+
|
| 553 |
+
Returns:
|
| 554 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
| 555 |
+
"""
|
| 556 |
+
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
|
| 557 |
+
half_angles = 0.5 * angles
|
| 558 |
+
eps = 1e-6
|
| 559 |
+
small_angles = angles.abs() < eps
|
| 560 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
| 561 |
+
try:
|
| 562 |
+
sin_half_angles_over_angles[~small_angles] = (
|
| 563 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
| 564 |
+
)
|
| 565 |
+
except:
|
| 566 |
+
torch.save(axis_angle, f'before_convert_axis_angle.pt')
|
| 567 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
| 568 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
| 569 |
+
sin_half_angles_over_angles[small_angles] = (
|
| 570 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
| 571 |
+
)
|
| 572 |
+
quaternions = torch.cat(
|
| 573 |
+
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
|
| 574 |
+
)
|
| 575 |
+
return quaternions
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def quaternion_to_axis_angle(quaternions):
|
| 579 |
+
"""
|
| 580 |
+
Convert rotations given as quaternions to axis/angle.
|
| 581 |
+
|
| 582 |
+
Args:
|
| 583 |
+
quaternions: quaternions with real part first,
|
| 584 |
+
as tensor of shape (..., 4).
|
| 585 |
+
|
| 586 |
+
Returns:
|
| 587 |
+
Rotations given as a vector in axis angle form, as a tensor
|
| 588 |
+
of shape (..., 3), where the magnitude is the angle
|
| 589 |
+
turned anticlockwise in radians around the vector's
|
| 590 |
+
direction.
|
| 591 |
+
"""
|
| 592 |
+
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
|
| 593 |
+
half_angles = torch.atan2(norms, quaternions[..., :1])
|
| 594 |
+
angles = 2 * half_angles
|
| 595 |
+
eps = 1e-6
|
| 596 |
+
small_angles = angles.abs() < eps
|
| 597 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
| 598 |
+
sin_half_angles_over_angles[~small_angles] = (
|
| 599 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
| 600 |
+
)
|
| 601 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
| 602 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
| 603 |
+
sin_half_angles_over_angles[small_angles] = (
|
| 604 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
| 605 |
+
)
|
| 606 |
+
return quaternions[..., 1:] / sin_half_angles_over_angles
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
| 610 |
+
"""
|
| 611 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
| 612 |
+
using Gram--Schmidt orthogonalisation per Section B of [1].
|
| 613 |
+
Args:
|
| 614 |
+
d6: 6D rotation representation, of size (*, 6)
|
| 615 |
+
|
| 616 |
+
Returns:
|
| 617 |
+
batch of rotation matrices of size (*, 3, 3)
|
| 618 |
+
|
| 619 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
| 620 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
| 621 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
| 622 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
| 623 |
+
"""
|
| 624 |
+
|
| 625 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
| 626 |
+
b1 = F.normalize(a1, dim=-1)
|
| 627 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
| 628 |
+
b2 = F.normalize(b2, dim=-1)
|
| 629 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
| 630 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
| 634 |
+
"""
|
| 635 |
+
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
|
| 636 |
+
by dropping the last row. Note that 6D representation is not unique.
|
| 637 |
+
Args:
|
| 638 |
+
matrix: batch of rotation matrices of size (*, 3, 3)
|
| 639 |
+
|
| 640 |
+
Returns:
|
| 641 |
+
6D rotation representation, of size (*, 6)
|
| 642 |
+
|
| 643 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
| 644 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
| 645 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
| 646 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
| 647 |
+
"""
|
| 648 |
+
return matrix[..., :2, :].clone().reshape(*matrix.shape[:-2], 6)
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
def rotate_trajectory(traj, rotZ, inverse=False):
|
| 652 |
+
if inverse:
|
| 653 |
+
# transpose
|
| 654 |
+
rotZ = rearrange(rotZ, "... i j -> ... j i")
|
| 655 |
+
|
| 656 |
+
vel = torch.diff(traj, dim=-2)
|
| 657 |
+
# 0 for the first one => keep the dimentionality
|
| 658 |
+
vel = torch.cat((0 * vel[..., [0], :], vel), dim=-2)
|
| 659 |
+
vel_local = torch.einsum("...kj,...k->...j", rotZ[..., :2, :2], vel[..., :2])
|
| 660 |
+
# Integrate the trajectory
|
| 661 |
+
traj_local = torch.cumsum(vel_local, dim=-2)
|
| 662 |
+
# First frame should be the same as before
|
| 663 |
+
traj_local = traj_local - traj_local[..., [0], :] + traj[..., [0], :]
|
| 664 |
+
return traj_local
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
def rotate_trans(trans, rotZ, inverse=False):
|
| 668 |
+
traj = trans[..., :2]
|
| 669 |
+
transZ = trans[..., 2]
|
| 670 |
+
traj_local = rotate_trajectory(traj, rotZ, inverse=inverse)
|
| 671 |
+
trans_local = torch.cat((traj_local, transZ[..., None]), axis=-1)
|
| 672 |
+
return trans_local
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
def canonicalize_rotations(global_orient, trans, angle=torch.pi/4):
|
| 677 |
+
global_euler = matrix_to_euler_angles(global_orient, "ZYX")
|
| 678 |
+
anglesZ, anglesY, anglesX = torch.unbind(global_euler, -1)
|
| 679 |
+
|
| 680 |
+
rotZ = _axis_angle_rotation("Z", anglesZ)
|
| 681 |
+
|
| 682 |
+
# remove the current rotation
|
| 683 |
+
# make it local
|
| 684 |
+
local_trans = rotate_trans(trans, rotZ)
|
| 685 |
+
|
| 686 |
+
# For information:
|
| 687 |
+
# rotate_joints(joints, rotZ) == joints_local
|
| 688 |
+
|
| 689 |
+
diff_mat_rotZ = rotZ[..., 1:, :, :] @ rotZ.transpose(-1, -2)[..., :-1, :, :]
|
| 690 |
+
|
| 691 |
+
vel_anglesZ = matrix_to_axis_angle(diff_mat_rotZ)[..., 2]
|
| 692 |
+
# padding "same"
|
| 693 |
+
vel_anglesZ = torch.cat((vel_anglesZ[..., [0]], vel_anglesZ), dim=-1)
|
| 694 |
+
|
| 695 |
+
# Compute new rotation:
|
| 696 |
+
# canonicalized
|
| 697 |
+
anglesZ = torch.cumsum(vel_anglesZ, -1)
|
| 698 |
+
anglesZ += angle
|
| 699 |
+
rotZ = _axis_angle_rotation("Z", anglesZ)
|
| 700 |
+
|
| 701 |
+
new_trans = rotate_trans(local_trans, rotZ, inverse=True)
|
| 702 |
+
|
| 703 |
+
new_global_euler = torch.stack((anglesZ, anglesY, anglesX), -1)
|
| 704 |
+
new_global_orient = euler_angles_to_matrix(new_global_euler, "ZYX")
|
| 705 |
+
|
| 706 |
+
return new_global_orient, new_trans
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
def rotate_motion_canonical(rotations, translation, transl_zero=True):
|
| 710 |
+
"""
|
| 711 |
+
Must be of shape S x (Jx3)
|
| 712 |
+
"""
|
| 713 |
+
rots_motion = rotations
|
| 714 |
+
trans_motion = translation
|
| 715 |
+
datum_len = rotations.shape[0]
|
| 716 |
+
rots_motion_rotmat = transform_body_pose(rots_motion.reshape(datum_len,
|
| 717 |
+
-1, 3),
|
| 718 |
+
'aa->rot')
|
| 719 |
+
orient_R_can, trans_can = canonicalize_rotations(rots_motion_rotmat[:,
|
| 720 |
+
0],
|
| 721 |
+
trans_motion)
|
| 722 |
+
rots_motion_rotmat_can = rots_motion_rotmat
|
| 723 |
+
rots_motion_rotmat_can[:, 0] = orient_R_can
|
| 724 |
+
|
| 725 |
+
rots_motion_aa_can = transform_body_pose(rots_motion_rotmat_can,
|
| 726 |
+
'rot->aa')
|
| 727 |
+
rots_motion_aa_can = rearrange(rots_motion_aa_can, 'F J d -> F (J d)',
|
| 728 |
+
d=3)
|
| 729 |
+
if transl_zero:
|
| 730 |
+
translation_can = trans_can - trans_can[0]
|
| 731 |
+
else:
|
| 732 |
+
translation_can = trans_can
|
| 733 |
+
|
| 734 |
+
return rots_motion_aa_can, translation_can
|
| 735 |
+
|
| 736 |
+
def transform_body_pose(pose, formats):
|
| 737 |
+
"""
|
| 738 |
+
various angle transformations, transforms input to torch.Tensor
|
| 739 |
+
input:
|
| 740 |
+
- pose: pose tensor
|
| 741 |
+
- formats: string denoting the input-output angle format
|
| 742 |
+
"""
|
| 743 |
+
if isinstance(pose, np.ndarray):
|
| 744 |
+
pose = torch.from_numpy(pose)
|
| 745 |
+
if formats == "6d->aa":
|
| 746 |
+
j = pose.shape[-1] / 6
|
| 747 |
+
pose = rearrange(pose, '... (j d) -> ... j d', d=6)
|
| 748 |
+
pose = pose.squeeze(-2) # in case of only one angle
|
| 749 |
+
pose = rotation_6d_to_matrix(pose)
|
| 750 |
+
pose = matrix_to_axis_angle(pose)
|
| 751 |
+
if j > 1:
|
| 752 |
+
pose = rearrange(pose, '... j d -> ... (j d)')
|
| 753 |
+
elif formats == "aa->6d":
|
| 754 |
+
j = pose.shape[-1] / 3
|
| 755 |
+
pose = rearrange(pose, '... (j c) -> ... j c', c=3)
|
| 756 |
+
pose = pose.squeeze(-2) # in case of only one angle
|
| 757 |
+
# axis-angle to rotation matrix & drop last row
|
| 758 |
+
pose = matrix_to_rotation_6d(axis_angle_to_matrix(pose))
|
| 759 |
+
if j > 1:
|
| 760 |
+
pose = rearrange(pose, '... j d -> ... (j d)')
|
| 761 |
+
elif formats == "aa->rot":
|
| 762 |
+
j = pose.shape[-1] / 3
|
| 763 |
+
pose = rearrange(pose, '... (j c) -> ... j c', c=3)
|
| 764 |
+
pose = pose.squeeze(-2) # in case of only one angle
|
| 765 |
+
# axis-angle to rotation matrix & drop last row
|
| 766 |
+
pose = torch.clamp(axis_angle_to_matrix(pose), min=-1.0, max=1.0)
|
| 767 |
+
elif formats == "6d->rot":
|
| 768 |
+
j = pose.shape[-1] / 6
|
| 769 |
+
pose = rearrange(pose, '... (j d) -> ... j d', d=6)
|
| 770 |
+
pose = pose.squeeze(-2) # in case of only one angle
|
| 771 |
+
pose = torch.clamp(rotation_6d_to_matrix(pose), min=-1.0, max=1.0)
|
| 772 |
+
elif formats == "rot->aa":
|
| 773 |
+
# pose = rearrange(pose, '... (j d1 d2) -> ... j d1 d2', d1=3, d2=3)
|
| 774 |
+
pose = matrix_to_axis_angle(pose)
|
| 775 |
+
elif formats == "rot->6d":
|
| 776 |
+
# pose = rearrange(pose, '... (j d1 d2) -> ... j d1 d2', d1=3, d2=3)
|
| 777 |
+
pose = matrix_to_rotation_6d(pose)
|
| 778 |
+
else:
|
| 779 |
+
raise ValueError(f"specified conversion format is invalid: {formats}")
|
| 780 |
+
return pose
|
| 781 |
+
|
| 782 |
+
def apply_rot_delta(rots, deltas, in_format="6d", out_format="6d"):
|
| 783 |
+
"""
|
| 784 |
+
rots needs to have same dimentionality as delta
|
| 785 |
+
"""
|
| 786 |
+
assert rots.shape == deltas.shape
|
| 787 |
+
if in_format == "aa":
|
| 788 |
+
j = rots.shape[-1] / 3
|
| 789 |
+
elif in_format == "6d":
|
| 790 |
+
j = rots.shape[-1] / 6
|
| 791 |
+
else:
|
| 792 |
+
raise ValueError(f"specified conversion format is unsupported: {in_format}")
|
| 793 |
+
rots = transform_body_pose(rots, f"{in_format}->rot")
|
| 794 |
+
deltas = transform_body_pose(deltas, f"{in_format}->rot")
|
| 795 |
+
new_rots = torch.einsum("...ij,...jk->...ik", rots, deltas) # Ri+1=Ri@delta
|
| 796 |
+
new_rots = transform_body_pose(new_rots, f"rot->{out_format}")
|
| 797 |
+
if j > 1:
|
| 798 |
+
new_rots = rearrange(new_rots, '... j d -> ... (j d)')
|
| 799 |
+
return new_rots
|
| 800 |
+
|
| 801 |
+
def rot_diff(rots1, rots2=None, in_format="6d", out_format="6d"):
|
| 802 |
+
"""
|
| 803 |
+
dim 0 is considered to be the time dimention, this is where the shift will happen
|
| 804 |
+
"""
|
| 805 |
+
self_diff = False
|
| 806 |
+
if in_format == "aa":
|
| 807 |
+
j = rots1.shape[-1] / 3
|
| 808 |
+
elif in_format == "6d":
|
| 809 |
+
j = rots1.shape[-1] / 6
|
| 810 |
+
else:
|
| 811 |
+
raise ValueError(f"specified conversion format is unsupported: {in_format}")
|
| 812 |
+
rots1 = transform_body_pose(rots1, f"{in_format}->rot")
|
| 813 |
+
if rots2 is not None:
|
| 814 |
+
rots2 = transform_body_pose(rots2, f"{in_format}->rot")
|
| 815 |
+
else:
|
| 816 |
+
self_diff = True
|
| 817 |
+
rots2 = rots1
|
| 818 |
+
rots1 = rots1.roll(1, 0)
|
| 819 |
+
|
| 820 |
+
rots_diff = torch.einsum("...ij,...ik->...jk", rots1, rots2) # Ri.T@R_i+1
|
| 821 |
+
if self_diff:
|
| 822 |
+
rots_diff[0, ..., :, :] = torch.eye(3, device=rots1.device)
|
| 823 |
+
|
| 824 |
+
rots_diff = transform_body_pose(rots_diff, f"rot->{out_format}")
|
| 825 |
+
if j > 1:
|
| 826 |
+
rots_diff = rearrange(rots_diff, '... j d -> ... (j d)')
|
| 827 |
+
return rots_diff
|
| 828 |
+
|
| 829 |
+
def change_for(p, R, T=0, forward=True):
|
| 830 |
+
"""
|
| 831 |
+
Change frame of reference for vector p
|
| 832 |
+
p: vector in original coordinate frame
|
| 833 |
+
R: rotation matrix of new coordinate frame ([x, y, z] format)
|
| 834 |
+
T: translation of new coordinate frame
|
| 835 |
+
Let angle R by a.
|
| 836 |
+
forward: rotates the coordinate frame by -a (True) or rotate the point
|
| 837 |
+
by +a.
|
| 838 |
+
"""
|
| 839 |
+
if forward: # R.T @ (p_global - pelvis_translation)
|
| 840 |
+
return torch.einsum('...di,...d->...i', R, p - T)
|
| 841 |
+
else: # R @ (p_global - pelvis_translation)
|
| 842 |
+
return torch.einsum('...di,...i->...d', R, p) + T
|
| 843 |
+
|
| 844 |
+
def get_z_rot(rot_, in_format="6d"):
|
| 845 |
+
rot = rot_.clone().detach()
|
| 846 |
+
rot = transform_body_pose(rot, f"{in_format}->rot")
|
| 847 |
+
euler_z = matrix_to_euler_angles(rot, "ZYX")
|
| 848 |
+
euler_z[..., 1:] = 0.0
|
| 849 |
+
z_rot = torch.clamp(
|
| 850 |
+
euler_angles_to_matrix(euler_z, "ZYX"),
|
| 851 |
+
min=-1.0, max=1.0) # add zero XY euler angles
|
| 852 |
+
return z_rot
|
| 853 |
+
|
| 854 |
+
def remove_z_rot(pose, in_format="6d", out_format="6d"):
|
| 855 |
+
"""
|
| 856 |
+
zero-out the global orientation around Z axis
|
| 857 |
+
"""
|
| 858 |
+
assert out_format == "6d"
|
| 859 |
+
if isinstance(pose, np.ndarray):
|
| 860 |
+
pose = torch.from_numpy(pose)
|
| 861 |
+
# transform to matrix
|
| 862 |
+
pose = transform_body_pose(pose, f"{in_format}->rot")
|
| 863 |
+
pose = matrix_to_euler_angles(pose, "ZYX")
|
| 864 |
+
pose[..., 0] = 0
|
| 865 |
+
pose = matrix_to_rotation_6d(torch.clamp(
|
| 866 |
+
euler_angles_to_matrix(pose, "ZYX"),
|
| 867 |
+
min=-1.0, max=1.0))
|
| 868 |
+
return pose
|
| 869 |
+
|
| 870 |
+
def local_to_global_orient(body_orient: Tensor, poses: Tensor, parents: list,
|
| 871 |
+
input_format='aa', output_format='aa'):
|
| 872 |
+
"""
|
| 873 |
+
Modified from aitviewer
|
| 874 |
+
Convert relative joint angles to global by unrolling the kinematic chain.
|
| 875 |
+
This function is fully differentiable ;)
|
| 876 |
+
:param poses: A tensor of shape (N, N_JOINTS*d) defining the relative poses in angle-axis format.
|
| 877 |
+
:param parents: A list of parents for each joint j, i.e. parent[j] is the parent of joint j.
|
| 878 |
+
:param output_format: 'aa' for axis-angle or 'rotmat' for rotation matrices.
|
| 879 |
+
:param input_format: 'aa' or 'rotmat' ...
|
| 880 |
+
:return: The global joint angles as a tensor of shape (N, N_JOINTS*DOF).
|
| 881 |
+
"""
|
| 882 |
+
assert output_format in ['aa', 'rotmat']
|
| 883 |
+
assert input_format in ['aa', 'rotmat']
|
| 884 |
+
dof = 3 if input_format == 'aa' else 9
|
| 885 |
+
n_joints = poses.shape[-1] // dof + 1
|
| 886 |
+
if input_format == 'aa':
|
| 887 |
+
body_orient = rotvec_to_rotmat(body_orient)
|
| 888 |
+
local_oris = rotvec_to_rotmat(rearrange(poses, '... (j d) -> ... j d', d=3))
|
| 889 |
+
local_oris = torch.cat((body_orient[..., None, :, :], local_oris), dim=-3)
|
| 890 |
+
else:
|
| 891 |
+
# this part has not been tested
|
| 892 |
+
local_oris = torch.cat((body_orient[..., None, :, :], local_oris), dim=-3)
|
| 893 |
+
global_oris_ = []
|
| 894 |
+
|
| 895 |
+
# Apply the chain rule starting from the pelvis
|
| 896 |
+
for j in range(n_joints):
|
| 897 |
+
if parents[j] < 0:
|
| 898 |
+
# root
|
| 899 |
+
global_oris_.append(local_oris[..., j, :, :])
|
| 900 |
+
else:
|
| 901 |
+
parent_rot = global_oris_[parents[j]]
|
| 902 |
+
local_rot = local_oris[..., j, :, :]
|
| 903 |
+
global_oris_.append(torch.einsum('...ij,...jk->...ik', parent_rot, local_rot))
|
| 904 |
+
# global_oris[..., j, :, :] = torch.bmm(parent_rot, local_rot)
|
| 905 |
+
global_oris = torch.stack(global_oris_, dim=1)
|
| 906 |
+
# global_oris: ... x J x 3 x 3
|
| 907 |
+
# account for the body's root orientation
|
| 908 |
+
# global_oris = torch.einsum('...ij,...jk->...ik', body_orient[..., None, :, :], global_oris)
|
| 909 |
+
|
| 910 |
+
if output_format == 'aa':
|
| 911 |
+
return rotmat_to_rotvec(global_oris)
|
| 912 |
+
# res = global_oris.reshape((-1, n_joints * 3))
|
| 913 |
+
else:
|
| 914 |
+
return global_oris
|
| 915 |
+
# return res
|