aungkomyat commited on
Commit
3f7f472
·
verified ·
1 Parent(s): 0bc4eed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -13
README.md CHANGED
@@ -1,13 +1,50 @@
1
- ---
2
- title: Mmtts
3
- emoji: 💬
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
- short_description: Myanmar Text to Speech 2
11
- ---
12
-
13
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Myanmar Text-to-Speech Demo
2
+
3
+ This Hugging Face Space demonstrates the Myanmar Text-to-Speech (TTS) system developed by [hpbyte](https://github.com/hpbyte/myanmar-tts). It's an end-to-end speech synthesis system specifically designed for the Burmese language.
4
+
5
+ ## About the Project
6
+
7
+ This is an implementation of Tacotron 2 for Myanmar language text-to-speech synthesis. Unlike Meta's Massively Multilingual Speech (MMS) Burmese TTS, this project is specifically focused on high-quality Burmese speech synthesis using an end-to-end approach.
8
+
9
+ ### Key Features:
10
+ - End-to-end Burmese text-to-speech synthesis
11
+ - Built on the Tacotron 2 architecture
12
+ - Custom text processing for the Myanmar language
13
+ - Clean and natural-sounding voice output
14
+
15
+ ## How to Use This Demo
16
+
17
+ 1. Enter Burmese text in the input box
18
+ 2. Click "Submit" to generate speech
19
+ 3. Listen to the generated audio output
20
+
21
+ ## Examples
22
+
23
+ Try these example phrases:
24
+ - မင်္ဂလာပါ (Hello)
25
+ - မြန်မာစကားပြောစနစ်ကို ကြိုဆိုပါတယ် (Welcome to the Myanmar speech system)
26
+ - ဒီစနစ်ဟာ မြန်မာစာကို အသံအဖြစ် ပြောင်းပေးနိုင်ပါတယ် (This system can convert Myanmar text to speech)
27
+
28
+ ## Model Details
29
+
30
+ This model uses a Tacotron 2 architecture to generate mel spectrograms from text, which are then converted to waveforms using a vocoder. The model was trained on a dataset of Burmese speech.
31
+
32
+ ## References
33
+
34
+ - Original Repository: [https://github.com/hpbyte/myanmar-tts](https://github.com/hpbyte/myanmar-tts)
35
+ - Paper: [Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions](https://arxiv.org/abs/1712.05884)
36
+
37
+ ## Citation
38
+
39
+ If you use this model in your research or application, please cite the original repository:
40
+
41
+ ```
42
+ @misc{myanmar-tts,
43
+ author = {Htet Pyie Sone},
44
+ title = {Myanmar Text-to-Speech},
45
+ year = {2021},
46
+ publisher = {GitHub},
47
+ journal = {GitHub repository},
48
+ howpublished = {\url{https://github.com/hpbyte/myanmar-tts}}
49
+ }
50
+ ```