Spaces:
Paused
Paused
avinash
commited on
Commit
·
2ddcf2d
1
Parent(s):
6d4e4e8
asr
Browse files- .gitignore +1 -0
- app.py +17 -87
- asr.py +8 -0
- requirements.txt +5 -5
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
venv
|
app.py
CHANGED
|
@@ -1,89 +1,19 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
def extract_text_from_pdf(pdf_path):
|
| 10 |
-
text = ""
|
| 11 |
-
if pdf_path.endswith('.txt'):
|
| 12 |
-
with open(pdf_path, 'r', encoding='utf-8') as f:
|
| 13 |
-
text = f.read()
|
| 14 |
-
else:
|
| 15 |
-
with open(pdf_path, 'rb') as f:
|
| 16 |
-
reader = PyPDF2.PdfReader(f)
|
| 17 |
-
for page in reader.pages:
|
| 18 |
-
text += page.extract_text() or ""
|
| 19 |
-
return text
|
| 20 |
-
|
| 21 |
-
def split_text(text, chunk_size=512, overlap=64):
|
| 22 |
-
words = text.split()
|
| 23 |
-
chunks = []
|
| 24 |
-
for i in range(0, len(words), chunk_size - overlap):
|
| 25 |
-
chunk = " ".join(words[i:i+chunk_size])
|
| 26 |
-
chunks.append(chunk)
|
| 27 |
-
return chunks
|
| 28 |
-
|
| 29 |
-
def build_faiss_index(embedding_model, chunks):
|
| 30 |
-
embeddings = embedding_model.encode(chunks)
|
| 31 |
-
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 32 |
-
index.add(np.array(embeddings))
|
| 33 |
-
return index, embeddings
|
| 34 |
-
|
| 35 |
-
def get_top_k_chunks(query, chunks, embedding_model, index, k=5):
|
| 36 |
-
query_vec = embedding_model.encode([query])
|
| 37 |
-
D, I = index.search(np.array(query_vec), k)
|
| 38 |
-
return [chunks[i] for i in I[0]]
|
| 39 |
-
|
| 40 |
-
def setup_models():
|
| 41 |
-
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 42 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 43 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 44 |
-
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 45 |
-
return tokenizer, model, embedding_model
|
| 46 |
-
|
| 47 |
-
def generate_response(tokenizer, model, context_chunks, query):
|
| 48 |
-
context = "\n".join(context_chunks)
|
| 49 |
-
prompt = f"""<|system|>
|
| 50 |
-
You are a helpful assistant. Use the context below to answer the user's question.
|
| 51 |
-
|
| 52 |
-
CONTEXT:
|
| 53 |
-
{context}
|
| 54 |
-
|
| 55 |
-
<|user|>
|
| 56 |
-
{query}
|
| 57 |
-
|
| 58 |
-
<|assistant|>"""
|
| 59 |
-
|
| 60 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 61 |
-
|
| 62 |
-
with torch.no_grad():
|
| 63 |
-
outputs = model.generate(
|
| 64 |
-
inputs.input_ids,
|
| 65 |
-
max_length=2048,
|
| 66 |
-
temperature=0.7,
|
| 67 |
-
do_sample=True,
|
| 68 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 72 |
-
return response.strip()
|
| 73 |
-
|
| 74 |
-
# =====================
|
| 75 |
if __name__ == "__main__":
|
| 76 |
-
|
| 77 |
-
query = "What is the main topic of the document?"
|
| 78 |
-
|
| 79 |
-
# Setup
|
| 80 |
-
text = extract_text_from_pdf(pdf_path)
|
| 81 |
-
chunks = split_text(text)
|
| 82 |
-
tokenizer, model, embedding_model = setup_models()
|
| 83 |
-
index, _ = build_faiss_index(embedding_model, chunks)
|
| 84 |
-
|
| 85 |
-
# Retrieval + Generation
|
| 86 |
-
top_chunks = get_top_k_chunks(query, chunks, embedding_model, index)
|
| 87 |
-
response = generate_response(tokenizer, model, top_chunks, query)
|
| 88 |
-
|
| 89 |
-
print("Response:\n", response)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from asr import transcribe_audio
|
| 4 |
+
|
| 5 |
+
def process_audio(audio):
|
| 6 |
+
if audio is None:
|
| 7 |
+
return "No audio received!"
|
| 8 |
+
return transcribe_audio(audio)
|
| 9 |
+
|
| 10 |
+
ui = gr.Interface(
|
| 11 |
+
fn=process_audio,
|
| 12 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
| 13 |
+
outputs="text",
|
| 14 |
+
title="🎤 Whisper ASR Tester",
|
| 15 |
+
description="Speak into the mic and see the transcribed text using Whisper-tiny."
|
| 16 |
+
)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if __name__ == "__main__":
|
| 19 |
+
ui.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
asr.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# asr.py
|
| 2 |
+
import whisper
|
| 3 |
+
|
| 4 |
+
model = whisper.load_model("tiny") # lightweight + fast
|
| 5 |
+
|
| 6 |
+
def transcribe_audio(file_path: str) -> str:
|
| 7 |
+
result = model.transcribe(file_path)
|
| 8 |
+
return result["text"]
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
transformers
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
PyPDF2
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
openai-whisper
|
| 3 |
transformers
|
| 4 |
+
torch
|
| 5 |
+
TTS
|
| 6 |
+
accelerate
|
|
|