smolvlm2-video-highlights / huggingface_segment_highlights.py
avinashHuggingface108's picture
Update deployment to use SmolVLM2-256M-Video-Instruct model
7ef6739
#!/usr/bin/env python3
"""
HuggingFace Segment-Based Video Highlights Generator
Based on HuggingFace's SmolVLM2-HighlightGenerator approach
Optimized for HuggingFace Spaces with 256M model for resource efficiency
"""
import os
import sys
import argparse
import json
import subprocess
import tempfile
from pathlib import Path
from PIL import Image
from typing import List, Dict, Tuple, Optional
import logging
# Add src directory to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
try:
from src.smolvlm2_handler import SmolVLM2Handler
except ImportError:
print("❌ SmolVLM2Handler not found. Make sure to install dependencies first.")
sys.exit(1)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HuggingFaceVideoHighlightDetector:
"""
HuggingFace Segment-Based Video Highlight Detection
Uses fixed-length segments for consistent AI classification
"""
def __init__(self, model_name: str = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"):
"""Initialize with SmolVLM2 model - 2.2B provides much better reasoning than 256M"""
print(f"πŸ”₯ Loading {model_name} for HuggingFace Segment-Based Analysis...")
self.vlm_handler = SmolVLM2Handler(model_name=model_name)
print("βœ… SmolVLM2 loaded successfully!")
def get_video_duration_seconds(self, video_path: str) -> float:
"""Get video duration using ffprobe"""
cmd = [
"ffprobe", "-v", "quiet", "-show_entries",
"format=duration", "-of", "csv=p=0", video_path
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
return float(result.stdout.strip())
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get video duration: {e}")
return 0.0
def analyze_video_content(self, video_path: str) -> str:
"""Get overall video description by analyzing multiple frames"""
duration = self.get_video_duration_seconds(video_path)
# Extract frames from different parts of the video
frame_times = [duration * 0.1, duration * 0.3, duration * 0.5, duration * 0.7, duration * 0.9]
descriptions = []
for i, time_point in enumerate(frame_times):
with tempfile.NamedTemporaryFile(suffix=f'_frame_{i}.jpg', delete=False) as temp_frame:
cmd = [
"ffmpeg", "-v", "quiet", "-i", video_path,
"-ss", str(time_point), "-vframes", "1", "-y", temp_frame.name
]
try:
subprocess.run(cmd, check=True, capture_output=True)
# Analyze this frame
prompt = f"Describe what is happening in this video frame at {time_point:.1f}s. Focus on activities, actions, and interesting visual elements."
description = self.vlm_handler.generate_response(temp_frame.name, prompt)
descriptions.append(f"At {time_point:.1f}s: {description}")
except subprocess.CalledProcessError as e:
logger.error(f"Failed to extract frame at {time_point}s: {e}")
continue
finally:
# Clean up temp file
if os.path.exists(temp_frame.name):
os.unlink(temp_frame.name)
# Combine all descriptions
if descriptions:
return "Video content analysis:\n" + "\n".join(descriptions)
else:
return "Unable to analyze video content"
def determine_highlights(self, video_description: str) -> Tuple[str, str]:
"""Generate simple, focused criteria based on actual video content"""
# Instead of generating hallucinated criteria, use simple general criteria
# that can be applied to any video segment
criteria_set_1 = """Look for segments with:
- Significant movement or action
- Clear visual activity or events happening
- People interacting or doing activities
- Changes in scene or camera angle
- Dynamic or interesting visual content"""
criteria_set_2 = """Look for segments with:
- Interesting facial expressions or gestures
- Multiple people or subjects in frame
- Good lighting and clear visibility
- Engaging activities or behaviors
- Visually appealing or well-composed shots"""
return criteria_set_1, criteria_set_2
def process_segment(self, video_path: str, start_time: float, end_time: float,
highlight_criteria: str, segment_num: int, total_segments: int) -> str:
"""Process a single 5-second segment and determine if it matches criteria"""
# Extract 3 frames from the segment for analysis
segment_duration = end_time - start_time
frame_times = [
start_time + segment_duration * 0.2, # 20% into segment
start_time + segment_duration * 0.5, # Middle of segment
start_time + segment_duration * 0.8 # 80% into segment
]
temp_frames = []
try:
# Extract frames
for i, frame_time in enumerate(frame_times):
temp_frame = tempfile.NamedTemporaryFile(suffix=f'_frame_{i}.jpg', delete=False)
temp_frames.append(temp_frame.name)
temp_frame.close()
cmd = [
"ffmpeg", "-v", "quiet", "-i", video_path,
"-ss", str(frame_time), "-vframes", "1", "-y", temp_frame.name
]
subprocess.run(cmd, check=True, capture_output=True)
# Create prompt for segment classification - direct evaluation
prompt = f"""Look at this frame from a {segment_duration:.1f}-second video segment.
Rate this video segment for highlight potential on a scale of 1-10, where:
- 1-3: Boring, static, nothing interesting happening
- 4-6: Moderately interesting, some activity or visual interest
- 7-10: Very interesting, dynamic action, engaging content worth highlighting
Consider:
- Amount of movement and activity
- Visual interest and composition
- People interactions or engaging behavior
- Overall entertainment value
Give ONLY a number from 1-10, nothing else."""
# Get AI response using first frame (SmolVLM2Handler expects single image)
response = self.vlm_handler.generate_response(temp_frames[0], prompt)
# Extract numeric score from response
try:
# Try to extract a number from the response
import re
numbers = re.findall(r'\b(\d+)\b', response)
if numbers:
score = int(numbers[0])
if 1 <= score <= 10:
print(f" πŸ€– Score: {score}/10")
return str(score)
print(f" πŸ€– Response: {response} (couldn't extract valid score)")
return "1" # Default to low score if no valid number
except:
print(f" πŸ€– Response: {response} (error parsing)")
return "1"
except subprocess.CalledProcessError as e:
logger.error(f"Failed to process segment {segment_num}: {e}")
return "no"
finally:
# Clean up temp frames
for temp_frame in temp_frames:
if os.path.exists(temp_frame):
os.unlink(temp_frame)
def create_video_segment(self, video_path: str, start_sec: float, end_sec: float, output_path: str) -> bool:
"""Create a video segment using ffmpeg."""
cmd = [
"ffmpeg",
"-v", "quiet", # Suppress FFmpeg output
"-y",
"-i", video_path,
"-ss", str(start_sec),
"-to", str(end_sec),
"-c", "copy", # Copy without re-encoding for speed
output_path
]
try:
subprocess.run(cmd, check=True, capture_output=True)
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to create segment: {e}")
return False
def concatenate_scenes(self, video_path: str, scene_times: List[Tuple[float, float]],
output_path: str, with_effects: bool = True) -> bool:
"""Concatenate selected scenes with optional effects"""
if with_effects:
return self._concatenate_with_effects(video_path, scene_times, output_path)
else:
return self._concatenate_basic(video_path, scene_times, output_path)
def _concatenate_basic(self, video_path: str, scene_times: List[Tuple[float, float]], output_path: str) -> bool:
"""Basic concatenation without effects"""
if not scene_times:
logger.error("No scenes to concatenate")
return False
# Create temporary files for each segment
temp_files = []
temp_list_file = tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False)
try:
for i, (start_sec, end_sec) in enumerate(scene_times):
temp_file = tempfile.NamedTemporaryFile(suffix=f'_segment_{i}.mp4', delete=False)
temp_files.append(temp_file.name)
temp_file.close()
# Create segment
if not self.create_video_segment(video_path, start_sec, end_sec, temp_file.name):
return False
# Add to concat list
temp_list_file.write(f"file '{temp_file.name}'\n")
temp_list_file.close()
# Concatenate all segments
cmd = [
"ffmpeg", "-v", "quiet", "-y",
"-f", "concat", "-safe", "0",
"-i", temp_list_file.name,
"-c", "copy",
output_path
]
subprocess.run(cmd, check=True, capture_output=True)
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to concatenate scenes: {e}")
return False
finally:
# Cleanup
for temp_file in temp_files:
if os.path.exists(temp_file):
os.unlink(temp_file)
if os.path.exists(temp_list_file.name):
os.unlink(temp_list_file.name)
def _concatenate_with_effects(self, video_path: str, scene_times: List[Tuple[float, float]], output_path: str) -> bool:
"""Simple concatenation with basic fade transitions."""
filter_complex_parts = []
concat_inputs = []
# Simple fade duration
fade_duration = 0.5
for i, (start_sec, end_sec) in enumerate(scene_times):
print(f" ✨ Segment {i+1}: {start_sec:.1f}s - {end_sec:.1f}s ({end_sec-start_sec:.1f}s) with FADE effect")
# Simple video effects: just trim and basic fade
video_effects = (
f"trim=start={start_sec}:end={end_sec},"
f"setpts=PTS-STARTPTS,"
f"fade=t=in:st=0:d={fade_duration},"
f"fade=t=out:st={max(0, end_sec-start_sec-fade_duration)}:d={fade_duration}"
)
filter_complex_parts.append(f"[0:v]{video_effects}[v{i}];")
# Simple audio effects: just trim and fade
audio_effects = (
f"atrim=start={start_sec}:end={end_sec},"
f"asetpts=PTS-STARTPTS,"
f"afade=t=in:st=0:d={fade_duration},"
f"afade=t=out:st={max(0, end_sec-start_sec-fade_duration)}:d={fade_duration}"
)
filter_complex_parts.append(f"[0:a]{audio_effects}[a{i}];")
concat_inputs.append(f"[v{i}][a{i}]")
# Simple concatenate all segments
concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa];"
filter_complex = "".join(filter_complex_parts) + concat_filter
cmd = [
"ffmpeg",
"-v", "quiet",
"-y",
"-i", video_path,
"-filter_complex", filter_complex,
"-map", "[outv]",
"-map", "[outa]",
"-c:v", "libx264",
"-preset", "medium",
"-crf", "23",
"-c:a", "aac",
"-b:a", "128k",
"-pix_fmt", "yuv420p",
output_path
]
try:
subprocess.run(cmd, check=True, capture_output=True)
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to concatenate scenes with effects: {e}")
return False
def _single_segment_with_effects(self, video_path: str, scene_time: Tuple[float, float], output_path: str) -> bool:
"""Apply simple effects to a single segment."""
start_sec, end_sec = scene_time
print(f" ✨ Single segment: {start_sec:.1f}s - {end_sec:.1f}s ({end_sec-start_sec:.1f}s) with fade effect")
# Simple video effects: just trim and fade
video_effects = (
f"trim=start={start_sec}:end={end_sec},"
f"setpts=PTS-STARTPTS,"
f"fade=t=in:st=0:d=0.5,"
f"fade=t=out:st={max(0, end_sec-start_sec-0.5)}:d=0.5"
)
# Simple audio effects with fade
audio_effects = (
f"atrim=start={start_sec}:end={end_sec},"
f"asetpts=PTS-STARTPTS,"
f"afade=t=in:st=0:d=0.5,"
f"afade=t=out:st={max(0, end_sec-start_sec-0.5)}:d=0.5"
)
cmd = [
"ffmpeg",
"-v", "quiet",
"-y",
"-i", video_path,
"-vf", video_effects,
"-af", audio_effects,
"-c:v", "libx264",
"-preset", "medium",
"-crf", "23",
"-c:a", "aac",
"-b:a", "128k",
"-pix_fmt", "yuv420p",
output_path
]
try:
subprocess.run(cmd, check=True, capture_output=True)
return True
except subprocess.CalledProcessError as e:
logger.error(f"Failed to create single segment with effects: {e}")
return False
def process_video(self, video_path: str, output_path: str, segment_length: float = 5.0, with_effects: bool = True) -> Dict:
"""Process video using HuggingFace's segment-based approach."""
print("πŸš€ Starting HuggingFace Segment-Based Video Highlight Detection")
print(f"πŸ“ Input: {video_path}")
print(f"πŸ“ Output: {output_path}")
print(f"⏱️ Segment Length: {segment_length}s")
print()
# Get video duration
duration = self.get_video_duration_seconds(video_path)
if duration <= 0:
return {"error": "Could not determine video duration"}
print(f"πŸ“Ή Video duration: {duration:.1f}s ({duration/60:.1f} minutes)")
# Step 1: Analyze overall video content
print("🎬 Step 1: Analyzing overall video content...")
video_description = self.analyze_video_content(video_path)
print(f"πŸ“ Video Description:")
print(f" {video_description}")
print()
# Step 2: Direct scoring approach (no predefined criteria)
print("🎯 Step 2: Using direct scoring approach - each segment rated 1-10 for highlight potential")
print()
# Step 3: Process segments with scoring
num_segments = int(duration / segment_length) + (1 if duration % segment_length > 0 else 0)
print(f"πŸ” Step 3: Processing {num_segments} segments of {segment_length}s each...")
print(" Each segment will be scored 1-10 for highlight potential")
print()
segment_scores = []
for i in range(num_segments):
start_time = i * segment_length
end_time = min(start_time + segment_length, duration)
progress = int((i / num_segments) * 100) if num_segments > 0 else 0
print(f"πŸ“Š Processing segment {i+1}/{num_segments} ({progress}%)")
print(f" ⏰ Time: {start_time:.0f}s - {end_time:.1f}s")
# Get score for this segment
score_str = self.process_segment(video_path, start_time, end_time, "", i+1, num_segments)
try:
score = int(score_str)
segment_scores.append({
'start': start_time,
'end': end_time,
'score': score
})
if score >= 7:
print(f" βœ… HIGH SCORE ({score}/10) - Excellent highlight material")
elif score >= 5:
print(f" 🟑 MEDIUM SCORE ({score}/10) - Moderate interest")
else:
print(f" ❌ LOW SCORE ({score}/10) - Not highlight worthy")
except ValueError:
print(f" ❌ Invalid score: {score_str}")
segment_scores.append({
'start': start_time,
'end': end_time,
'score': 1
})
print()
# Sort segments by score and select top performers
segment_scores.sort(key=lambda x: x['score'], reverse=True)
# Select segments with score >= 6 (good highlight material)
high_score_segments = [s for s in segment_scores if s['score'] >= 6]
# If too few high-scoring segments, lower the threshold
if len(high_score_segments) < 3:
high_score_segments = [s for s in segment_scores if s['score'] >= 5]
# If still too few, take top 20% of segments
if len(high_score_segments) < 3:
top_count = max(3, len(segment_scores) // 5) # At least 3, or 20% of total
high_score_segments = segment_scores[:top_count]
selected_segments = [(s['start'], s['end']) for s in high_score_segments]
print("πŸ“Š Results Summary:")
print(f" πŸ“ˆ Average score: {sum(s['score'] for s in segment_scores) / len(segment_scores):.1f}/10")
print(f" πŸ† High-scoring segments (β‰₯6): {len([s for s in segment_scores if s['score'] >= 6])}")
print(f" βœ… Selected for highlights: {len(selected_segments)} segments ({len(selected_segments)/num_segments*100:.1f}% of video)")
print()
if not selected_segments:
return {
"error": "No segments had sufficient scores for highlights",
"video_description": video_description,
"segment_scores": segment_scores,
"total_segments": num_segments
}
# Step 4: Create highlights video
print(f"🎬 Step 4: Concatenating {len(selected_segments)} selected segments with {'beautiful effects & transitions' if with_effects else 'basic concatenation'}...")
success = self.concatenate_scenes(video_path, selected_segments, output_path, with_effects)
if success:
print("βœ… Highlights video created successfully!")
total_duration = sum(end - start for start, end in selected_segments)
print(f"πŸŽ‰ SUCCESS! Created highlights with {len(selected_segments)} segments")
print(f" πŸ“Ή Total highlight duration: {total_duration:.1f}s")
print(f" πŸ“Š Percentage of original video: {total_duration/duration*100:.1f}%")
else:
print("❌ Failed to create highlights video")
return {"error": "Failed to create highlights video"}
# Return analysis results
return {
"success": True,
"video_description": video_description,
"scoring_approach": "Direct segment scoring (1-10 scale)",
"total_segments": num_segments,
"selected_segments": len(selected_segments),
"selected_times": selected_segments,
"segment_scores": segment_scores,
"average_score": sum(s['score'] for s in segment_scores) / len(segment_scores),
"total_duration": total_duration,
"compression_ratio": total_duration/duration,
"output_path": output_path
}
def main():
parser = argparse.ArgumentParser(description='HuggingFace Segment-Based Video Highlights')
parser.add_argument('video_path', help='Path to input video file')
parser.add_argument('--output', required=True, help='Path to output highlights video')
parser.add_argument('--save-analysis', action='store_true', help='Save analysis results to JSON')
parser.add_argument('--segment-length', type=float, default=5.0, help='Length of each segment in seconds (default: 5.0)')
parser.add_argument('--model', default='HuggingFaceTB/SmolVLM2-256M-Video-Instruct', help='SmolVLM2 model to use')
parser.add_argument('--effects', action='store_true', default=True, help='Enable beautiful effects & transitions (default: True)')
parser.add_argument('--no-effects', action='store_true', help='Disable effects - basic concatenation only')
args = parser.parse_args()
# Handle effects flag
with_effects = args.effects and not args.no_effects
print("πŸš€ HuggingFace Approach SmolVLM2 Video Highlights")
print(" Based on: https://huggingface.co/spaces/HuggingFaceTB/SmolVLM2-HighlightGenerator")
print(f" Model: {args.model}")
print(f" Effects: {'✨ Beautiful effects & transitions enabled' if with_effects else 'πŸ”§ Basic concatenation only'}")
print()
# Initialize detector
detector = HuggingFaceVideoHighlightDetector(model_name=args.model)
# Process video
results = detector.process_video(
video_path=args.video_path,
output_path=args.output,
segment_length=args.segment_length,
with_effects=with_effects
)
# Save analysis if requested
if args.save_analysis and 'error' not in results:
analysis_path = args.output.replace('.mp4', '_hf_analysis.json')
with open(analysis_path, 'w') as f:
json.dump(results, f, indent=2)
print(f"πŸ“Š Analysis saved: {analysis_path}")
if 'error' in results:
print(f"❌ {results['error']}")
sys.exit(1)
if __name__ == "__main__":
main()