Update app.py
Browse files
app.py
CHANGED
|
@@ -6,13 +6,12 @@ from huggingface_hub import InferenceClient
|
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
| 8 |
import json
|
| 9 |
-
import os
|
| 10 |
|
| 11 |
import arxiv
|
| 12 |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
| 13 |
|
| 14 |
-
retrieve_results =
|
| 15 |
-
show_examples =
|
| 16 |
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
|
| 17 |
|
| 18 |
generate_kwargs = dict(
|
|
@@ -22,6 +21,7 @@ generate_kwargs = dict(
|
|
| 22 |
do_sample = False,
|
| 23 |
)
|
| 24 |
|
|
|
|
| 25 |
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
|
| 26 |
|
| 27 |
try:
|
|
@@ -32,6 +32,7 @@ try:
|
|
| 32 |
except:
|
| 33 |
gr.Warning("Retriever not working!")
|
| 34 |
|
|
|
|
| 35 |
mark_text = '# 🩺🔍 Search Results\n'
|
| 36 |
header_text = "## Arxiv Paper Summary With QA Retrieval Augmented Generation \n"
|
| 37 |
|
|
@@ -49,6 +50,7 @@ except:
|
|
| 49 |
|
| 50 |
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
|
| 51 |
|
|
|
|
| 52 |
arx_client = arxiv.Client()
|
| 53 |
is_arxiv_available = True
|
| 54 |
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
|
|
@@ -57,15 +59,27 @@ if len(check_arxiv_result) == 0:
|
|
| 57 |
print("Arxiv search not working, switching to default search ...")
|
| 58 |
database_choices = [index_info]
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
def rag_cleaner(inp):
|
| 71 |
rank = inp['rank']
|
|
@@ -122,123 +136,87 @@ def SaveResponseAndRead(result):
|
|
| 122 |
'''
|
| 123 |
gr.HTML(documentHTML5)
|
| 124 |
|
| 125 |
-
def save_search_results(prompt, results, response):
|
| 126 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 127 |
-
#filename = f"{timestamp}_{re.sub(r'[^\\w\\-_\\. ]', '_', prompt)}.txt"
|
| 128 |
-
filename = f"{timestamp} - {prompt}.txt"
|
| 129 |
-
with open(filename, "w") as f:
|
| 130 |
-
f.write(f"# {prompt}\n\n")
|
| 131 |
-
f.write(f"## Search Results\n\n{results}\n\n")
|
| 132 |
-
f.write(f"## LLM Response\n\n{response}\n")
|
| 133 |
-
return filename
|
| 134 |
-
|
| 135 |
-
def get_past_searches():
|
| 136 |
-
txt_files = [f for f in os.listdir(".") if f.endswith(".txt") and f != "requirements.txt"]
|
| 137 |
-
return txt_files
|
| 138 |
|
| 139 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
| 140 |
header = gr.Markdown(header_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 147 |
-
with gr.Row(equal_height = True):
|
| 148 |
-
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
|
| 149 |
-
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
| 150 |
-
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
| 151 |
-
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
| 152 |
-
|
| 153 |
-
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
|
| 154 |
-
input = gr.Textbox(show_label = False, visible = False)
|
| 155 |
-
gr_md = gr.Markdown(mark_text + md_text_initial)
|
| 156 |
-
|
| 157 |
-
with gr.Column():
|
| 158 |
-
past_searches = gr.Dropdown(choices=get_past_searches(), label="Past Searches")
|
| 159 |
-
past_search_content = gr.Textbox(label="Past Search Content", visible=False)
|
| 160 |
-
|
| 161 |
-
def update_past_search_content(past_search):
|
| 162 |
-
if past_search:
|
| 163 |
-
with open(past_search, "r") as f:
|
| 164 |
-
content = f.read()
|
| 165 |
-
return gr.Textbox.update(value=content, visible=True)
|
| 166 |
-
else:
|
| 167 |
-
return gr.Textbox.update(visible=False)
|
| 168 |
|
| 169 |
-
past_searches.change(update_past_search_content, past_searches, past_search_content)
|
| 170 |
-
|
| 171 |
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
|
| 172 |
prompt_text_from_data = ""
|
| 173 |
database_to_use = database_choice
|
| 174 |
if database_choice == index_info:
|
| 175 |
-
|
| 176 |
else:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
|
|
|
| 190 |
md_text_updated = mark_text
|
| 191 |
for i in range(retrieve_results):
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
with open(filename, "r") as f:
|
| 204 |
-
md_content = f.read()
|
| 205 |
-
|
| 206 |
-
return md_content, prompt, get_past_searches()
|
| 207 |
-
|
| 208 |
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
|
| 209 |
-
|
| 210 |
-
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
[msg, gr_md, output_text],
|
| 241 |
-
None
|
| 242 |
-
)
|
| 243 |
|
| 244 |
demo.queue().launch()
|
|
|
|
| 6 |
import re
|
| 7 |
from datetime import datetime
|
| 8 |
import json
|
|
|
|
| 9 |
|
| 10 |
import arxiv
|
| 11 |
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
| 12 |
|
| 13 |
+
retrieve_results = 20
|
| 14 |
+
show_examples = True
|
| 15 |
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
|
| 16 |
|
| 17 |
generate_kwargs = dict(
|
|
|
|
| 21 |
do_sample = False,
|
| 22 |
)
|
| 23 |
|
| 24 |
+
## RAG Model
|
| 25 |
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
|
| 26 |
|
| 27 |
try:
|
|
|
|
| 32 |
except:
|
| 33 |
gr.Warning("Retriever not working!")
|
| 34 |
|
| 35 |
+
## Header
|
| 36 |
mark_text = '# 🩺🔍 Search Results\n'
|
| 37 |
header_text = "## Arxiv Paper Summary With QA Retrieval Augmented Generation \n"
|
| 38 |
|
|
|
|
| 50 |
|
| 51 |
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
|
| 52 |
|
| 53 |
+
## Arxiv API
|
| 54 |
arx_client = arxiv.Client()
|
| 55 |
is_arxiv_available = True
|
| 56 |
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
|
|
|
|
| 59 |
print("Arxiv search not working, switching to default search ...")
|
| 60 |
database_choices = [index_info]
|
| 61 |
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Show examples
|
| 65 |
+
sample_outputs = {
|
| 66 |
+
'output_placeholder': 'The LLM will provide an answer to your question here...',
|
| 67 |
+
'search_placeholder': '''
|
| 68 |
+
1. What is MoE?
|
| 69 |
+
2. What are Multi Agent Systems?
|
| 70 |
+
3. What is Self Rewarding AI?
|
| 71 |
+
4. What is Semantic and Episodic memory?
|
| 72 |
+
5. What is AutoGen?
|
| 73 |
+
6. What is ChatDev?
|
| 74 |
+
7. What is Omniverse?
|
| 75 |
+
8. What is Lumiere?
|
| 76 |
+
9. What is SORA?
|
| 77 |
+
'''
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
output_placeholder = sample_outputs['output_placeholder']
|
| 81 |
+
md_text_initial = sample_outputs['search_placeholder']
|
| 82 |
+
|
| 83 |
|
| 84 |
def rag_cleaner(inp):
|
| 85 |
rank = inp['rank']
|
|
|
|
| 136 |
'''
|
| 137 |
gr.HTML(documentHTML5)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
| 141 |
header = gr.Markdown(header_text)
|
| 142 |
+
|
| 143 |
+
with gr.Group():
|
| 144 |
+
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
|
| 145 |
+
|
| 146 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 147 |
+
with gr.Row(equal_height = True):
|
| 148 |
+
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
|
| 149 |
+
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
| 150 |
+
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
| 151 |
+
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
| 152 |
|
| 153 |
+
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
|
| 154 |
+
input = gr.Textbox(show_label = False, visible = False)
|
| 155 |
+
gr_md = gr.Markdown(mark_text + md_text_initial)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
|
|
|
|
|
|
| 157 |
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
|
| 158 |
prompt_text_from_data = ""
|
| 159 |
database_to_use = database_choice
|
| 160 |
if database_choice == index_info:
|
| 161 |
+
rag_out = get_rag(message)
|
| 162 |
else:
|
| 163 |
+
arxiv_search_success = True
|
| 164 |
+
try:
|
| 165 |
+
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
|
| 166 |
+
if len(rag_out) == 0:
|
| 167 |
+
arxiv_search_success = False
|
| 168 |
+
except:
|
| 169 |
+
arxiv_search_success = False
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
if not arxiv_search_success:
|
| 173 |
+
gr.Warning("Arxiv Search not working, switching to semantic search ...")
|
| 174 |
+
rag_out = get_rag(message)
|
| 175 |
+
database_to_use = index_info
|
| 176 |
+
|
| 177 |
md_text_updated = mark_text
|
| 178 |
for i in range(retrieve_results):
|
| 179 |
+
rag_answer = rag_out[i]
|
| 180 |
+
if i < llm_results_use:
|
| 181 |
+
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
|
| 182 |
+
prompt_text_from_data += f"{i+1}. {prompt_text}"
|
| 183 |
+
else:
|
| 184 |
+
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
|
| 185 |
+
md_text_updated += md_text_paper
|
| 186 |
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
| 187 |
+
return md_text_updated, prompt
|
| 188 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
|
| 190 |
+
model_disabled_text = "LLM Model is disabled"
|
| 191 |
+
output = ""
|
| 192 |
|
| 193 |
+
if llm_model_picked == 'None':
|
| 194 |
+
if stream_outputs:
|
| 195 |
+
for out in model_disabled_text:
|
| 196 |
+
output += out
|
| 197 |
+
yield output
|
| 198 |
+
return output
|
| 199 |
+
else:
|
| 200 |
+
return model_disabled_text
|
| 201 |
|
| 202 |
+
client = InferenceClient(llm_model_picked)
|
| 203 |
+
try:
|
| 204 |
+
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
|
| 205 |
|
| 206 |
+
except:
|
| 207 |
+
gr.Warning("LLM Inference rate limit reached, try again later!")
|
| 208 |
+
return ""
|
| 209 |
|
| 210 |
+
if stream_outputs:
|
| 211 |
+
for response in stream:
|
| 212 |
+
output += response
|
| 213 |
+
SaveResponseAndRead(response)
|
| 214 |
+
yield output
|
| 215 |
+
return output
|
| 216 |
+
else:
|
| 217 |
+
return stream
|
| 218 |
|
| 219 |
+
|
| 220 |
+
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
demo.queue().launch()
|