Spaces:
Sleeping
Sleeping
File size: 7,447 Bytes
81dfb18 2e05d21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""
Uzbek Speech Recognition with NVIDIA FastConformer
Client-side audio recording, server-side transcription
Optimized for Hugging Face Spaces deployment
"""
from flask import Flask, render_template, request, jsonify
from flask_cors import CORS
import nemo.collections.asr as nemo_asr
import tempfile
import os
import threading
import librosa
import soundfile as sf
app = Flask(__name__)
CORS(app) # Enable CORS for WebGL Unity builds
print("=" * 60)
print("๐ Loading NVIDIA FastConformer for Uzbek...")
print("=" * 60)
asr_model = None
model_loaded = False
last_transcribed_text = ""
last_animation_data = []
last_transcription_lock = threading.Lock()
# Available letters in Unity
AVAILABLE_LETTERS = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'
]
def load_nvidia_model():
"""Load NeMo ASR model in background thread"""
global asr_model, model_loaded
try:
print("๐ฅ Loading nvidia/stt_uz_fastconformer_hybrid_large_pc...")
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(
model_name="nvidia/stt_uz_fastconformer_hybrid_large_pc"
)
model_loaded = True
print("โ
NVIDIA FastConformer loaded successfully!")
except Exception as e:
print(f"โ Model loading error: {e}")
model_loaded = False
# Start model loading in background
model_thread = threading.Thread(target=load_nvidia_model, daemon=True)
model_thread.start()
def process_text_to_letters(text):
"""
Convert text to fingerspelling
Each word shown letter by letter
"""
words = text.lower().split()
animation_data = []
for word in words:
if not word:
continue
# Clean word - keep only available letters
clean_word = ''.join(c for c in word if c.isalnum() and c in AVAILABLE_LETTERS)
if not clean_word:
continue
letters = list(clean_word)
if letters:
animation_data.append({
"type": "letters",
"word": clean_word,
"letters": letters
})
print(f"๐ค Word '{clean_word}' โ Fingerspelling: {' '.join(letters).upper()}")
return animation_data
def transcribe_uzbek_audio(audio_path):
"""Transcribe audio file using NeMo model"""
global asr_model
try:
# Ensure audio is in correct format (16kHz mono)
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
# Save as temporary WAV file
temp_wav = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
sf.write(temp_wav.name, audio, 16000)
# Transcribe
outputs = asr_model.transcribe([temp_wav.name])
# Clean up temp file
try:
os.unlink(temp_wav.name)
except:
pass
if outputs and len(outputs) > 0:
result = outputs[0]
# FIX: Extract text from Hypothesis object
if hasattr(result, 'text'):
return result.text # Get the .text attribute
elif isinstance(result, list):
result = " ".join(str(item) for item in result)
return str(result)
else:
return str(result)
except Exception as e:
print(f"โ Transcription error: {e}")
return ""
return ""
@app.route('/')
def index():
"""Serve main web interface"""
return render_template('testt.html')
@app.route('/message', methods=['GET'])
def get_message():
"""Unity endpoint - send fingerspelling sequence"""
global last_animation_data
with last_transcription_lock:
# Create letter sequence for Unity
letter_sequence = []
for item in last_animation_data:
if item["type"] == "letters":
for letter in item["letters"]:
letter_sequence.append(f"letter_{letter}")
message_string = " ".join(letter_sequence)
print(f"๐ค Sending to Unity: {message_string}")
return jsonify({
"message": message_string,
"animation_data": last_animation_data,
"language": "uz"
})
@app.route('/transcribe', methods=['POST'])
def transcribe():
"""
Receive audio from browser, transcribe, return fingerspelling data
Expects audio file in FormData with key 'audio'
"""
global model_loaded, last_transcribed_text, last_animation_data
if not model_loaded:
return jsonify({
"success": False,
"error": "Model is still loading... Please wait."
}), 503
try:
# Check if audio file was sent
if 'audio' not in request.files:
return jsonify({
"success": False,
"error": "No audio file received"
}), 400
audio_file = request.files['audio']
if audio_file.filename == '':
return jsonify({
"success": False,
"error": "Empty audio file"
}), 400
print(f"๐ Received audio file: {audio_file.filename}")
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
tmp_path = tmp_file.name
audio_file.save(tmp_path)
print("๐๏ธ Transcribing audio...")
# Transcribe
uzbek_text = transcribe_uzbek_audio(tmp_path)
# Clean up temp file
try:
os.unlink(tmp_path)
except:
pass
if uzbek_text:
print(f"โ
Transcribed: {uzbek_text}")
# Convert to fingerspelling
animation_data = process_text_to_letters(uzbek_text)
# Save for Unity endpoint
with last_transcription_lock:
last_transcribed_text = uzbek_text
last_animation_data = animation_data
return jsonify({
"success": True,
"uzbek": uzbek_text,
"animation_data": animation_data,
"language": "uz",
"model": "NVIDIA FastConformer"
})
else:
return jsonify({
"success": False,
"error": "Could not transcribe audio. Please speak clearly."
}), 400
except Exception as e:
print(f"โ Error: {e}")
import traceback
traceback.print_exc()
return jsonify({
"success": False,
"error": f"Server error: {str(e)}"
}), 500
@app.route('/health')
def health():
"""Health check endpoint"""
return jsonify({
"status": "running",
"model_loaded": model_loaded,
"model": "NVIDIA FastConformer (uz)" if model_loaded else "loading...",
"wer": "16.46%" if model_loaded else "N/A",
"mode": "Client-side Recording + Server-side Transcription"
})
if __name__ == '__main__':
print("=" * 60)
print("๐ NVIDIA FastConformer - Fingerspelling Server")
print("=" * 60)
print("๐ฑ Interface: http://0.0.0.0:7860")
print("๐ฏ WER: 16.46%")
print("๐ค MODE: Client-side recording")
print("๐ฎ Unity endpoint: /message")
print("=" * 60)
# Hugging Face Spaces uses port 7860
app.run(host='0.0.0.0', port=7860, debug=False) |