Update app.py
Browse files
app.py
CHANGED
|
@@ -5,10 +5,35 @@ import gradio as gr
|
|
| 5 |
import requests
|
| 6 |
import tempfile
|
| 7 |
|
| 8 |
-
|
| 9 |
-
model
|
| 10 |
-
processor
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def get_sample_data():
|
| 14 |
"""Download sample medical images and data"""
|
|
@@ -35,7 +60,6 @@ def save_temp_image(img):
|
|
| 35 |
return temp_file.name
|
| 36 |
|
| 37 |
def load_sample_findings():
|
| 38 |
-
"""Load sample data for findings generation"""
|
| 39 |
sample = get_sample_data()
|
| 40 |
return [
|
| 41 |
save_temp_image(sample["frontal"]),
|
|
@@ -47,22 +71,22 @@ def load_sample_findings():
|
|
| 47 |
]
|
| 48 |
|
| 49 |
def load_sample_phrase():
|
| 50 |
-
"""Load sample data for phrase grounding"""
|
| 51 |
sample = get_sample_data()
|
| 52 |
return [save_temp_image(sample["frontal"]), sample["phrase"]]
|
| 53 |
|
| 54 |
-
def generate_report(frontal_path, lateral_path, indication, technique, comparison,
|
| 55 |
prior_frontal_path, prior_lateral_path, prior_report, grounding):
|
| 56 |
-
"""Generate radiology report with
|
|
|
|
|
|
|
|
|
|
| 57 |
try:
|
| 58 |
-
# Load images
|
| 59 |
current_frontal = Image.open(frontal_path)
|
| 60 |
current_lateral = Image.open(lateral_path)
|
| 61 |
prior_frontal = Image.open(prior_frontal_path) if prior_frontal_path else None
|
| 62 |
prior_lateral = Image.open(prior_lateral_path) if prior_lateral_path else None
|
| 63 |
|
| 64 |
-
|
| 65 |
-
processed = processor.format_and_preprocess_reporting_input(
|
| 66 |
current_frontal=current_frontal,
|
| 67 |
current_lateral=current_lateral,
|
| 68 |
prior_frontal=prior_frontal,
|
|
@@ -73,88 +97,123 @@ def generate_report(frontal_path, lateral_path, indication, technique, compariso
|
|
| 73 |
prior_report=prior_report or None,
|
| 74 |
return_tensors="pt",
|
| 75 |
get_grounding=grounding
|
| 76 |
-
).to(
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
# Decode and format
|
| 84 |
prompt_length = processed["input_ids"].shape[-1]
|
| 85 |
-
decoded = processor.decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 86 |
-
return processor.convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
|
| 87 |
|
| 88 |
except Exception as e:
|
| 89 |
-
return f"
|
| 90 |
|
| 91 |
def ground_phrase(frontal_path, phrase):
|
| 92 |
-
"""Perform phrase grounding
|
|
|
|
|
|
|
|
|
|
| 93 |
try:
|
| 94 |
frontal = Image.open(frontal_path)
|
| 95 |
-
processed = processor.format_and_preprocess_phrase_grounding_input(
|
| 96 |
frontal_image=frontal,
|
| 97 |
phrase=phrase,
|
| 98 |
return_tensors="pt"
|
| 99 |
-
).to(
|
| 100 |
|
| 101 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
prompt_length = processed["input_ids"].shape[-1]
|
| 104 |
-
decoded = processor.decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 105 |
-
return processor.convert_output_to_plaintext_or_grounded_sequence(decoded)
|
| 106 |
|
| 107 |
except Exception as e:
|
| 108 |
-
return f"
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
with gr.
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
grounding = gr.Checkbox(label="Include Grounding")
|
| 130 |
-
sample_btn = gr.Button("Load Sample Data")
|
| 131 |
-
|
| 132 |
-
with gr.Column():
|
| 133 |
-
report_output = gr.Textbox(label="Generated Report", lines=10)
|
| 134 |
-
generate_btn = gr.Button("Generate Report")
|
| 135 |
-
|
| 136 |
-
sample_btn.click(load_sample_findings,
|
| 137 |
-
outputs=[frontal, lateral, indication, technique, comparison,
|
| 138 |
-
prior_frontal, prior_lateral, prior_report, grounding])
|
| 139 |
-
generate_btn.click(generate_report,
|
| 140 |
-
inputs=[frontal, lateral, indication, technique, comparison,
|
| 141 |
-
prior_frontal, prior_lateral, prior_report, grounding],
|
| 142 |
-
outputs=report_output)
|
| 143 |
|
| 144 |
-
with gr.
|
| 145 |
-
with gr.
|
| 146 |
-
with gr.
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
demo.launch()
|
|
|
|
| 5 |
import requests
|
| 6 |
import tempfile
|
| 7 |
|
| 8 |
+
MODEL_STATE = {
|
| 9 |
+
"model": None,
|
| 10 |
+
"processor": None,
|
| 11 |
+
"authenticated": False
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
def login(hf_token):
|
| 15 |
+
"""Authenticate and load the model"""
|
| 16 |
+
try:
|
| 17 |
+
MODEL_STATE.update({"model": None, "processor": None, "authenticated": False})
|
| 18 |
+
|
| 19 |
+
MODEL_STATE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 20 |
+
"microsoft/maira-2",
|
| 21 |
+
trust_remote_code=True,
|
| 22 |
+
use_auth_token=hf_token
|
| 23 |
+
)
|
| 24 |
+
MODEL_STATE["processor"] = AutoProcessor.from_pretrained(
|
| 25 |
+
"microsoft/maira-2",
|
| 26 |
+
trust_remote_code=True,
|
| 27 |
+
use_auth_token=hf_token
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
MODEL_STATE["model"] = MODEL_STATE["model"].eval().to("cpu")
|
| 31 |
+
MODEL_STATE["authenticated"] = True
|
| 32 |
+
|
| 33 |
+
return "🔓 Login successful! You can now use the model."
|
| 34 |
+
except Exception as e:
|
| 35 |
+
MODEL_STATE.update({"model": None, "processor": None, "authenticated": False})
|
| 36 |
+
return f"❌ Login failed: {str(e)}"
|
| 37 |
|
| 38 |
def get_sample_data():
|
| 39 |
"""Download sample medical images and data"""
|
|
|
|
| 60 |
return temp_file.name
|
| 61 |
|
| 62 |
def load_sample_findings():
|
|
|
|
| 63 |
sample = get_sample_data()
|
| 64 |
return [
|
| 65 |
save_temp_image(sample["frontal"]),
|
|
|
|
| 71 |
]
|
| 72 |
|
| 73 |
def load_sample_phrase():
|
|
|
|
| 74 |
sample = get_sample_data()
|
| 75 |
return [save_temp_image(sample["frontal"]), sample["phrase"]]
|
| 76 |
|
| 77 |
+
def generate_report(frontal_path, lateral_path, indication, technique, comparison,
|
| 78 |
prior_frontal_path, prior_lateral_path, prior_report, grounding):
|
| 79 |
+
"""Generate radiology report with authentication check"""
|
| 80 |
+
if not MODEL_STATE["authenticated"]:
|
| 81 |
+
return "⚠️ Please authenticate with your Hugging Face token first!"
|
| 82 |
+
|
| 83 |
try:
|
|
|
|
| 84 |
current_frontal = Image.open(frontal_path)
|
| 85 |
current_lateral = Image.open(lateral_path)
|
| 86 |
prior_frontal = Image.open(prior_frontal_path) if prior_frontal_path else None
|
| 87 |
prior_lateral = Image.open(prior_lateral_path) if prior_lateral_path else None
|
| 88 |
|
| 89 |
+
processed = MODEL_STATE["processor"].format_and_preprocess_reporting_input(
|
|
|
|
| 90 |
current_frontal=current_frontal,
|
| 91 |
current_lateral=current_lateral,
|
| 92 |
prior_frontal=prior_frontal,
|
|
|
|
| 97 |
prior_report=prior_report or None,
|
| 98 |
return_tensors="pt",
|
| 99 |
get_grounding=grounding
|
| 100 |
+
).to("cpu")
|
| 101 |
|
| 102 |
+
outputs = MODEL_STATE["model"].generate(
|
| 103 |
+
**processed,
|
| 104 |
+
max_new_tokens=450 if grounding else 300,
|
| 105 |
+
use_cache=True
|
| 106 |
+
)
|
| 107 |
|
|
|
|
| 108 |
prompt_length = processed["input_ids"].shape[-1]
|
| 109 |
+
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 110 |
+
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded.lstrip())
|
| 111 |
|
| 112 |
except Exception as e:
|
| 113 |
+
return f"❌ Generation error: {str(e)}"
|
| 114 |
|
| 115 |
def ground_phrase(frontal_path, phrase):
|
| 116 |
+
"""Perform phrase grounding with authentication check"""
|
| 117 |
+
if not MODEL_STATE["authenticated"]:
|
| 118 |
+
return "⚠️ Please authenticate with your Hugging Face token first!"
|
| 119 |
+
|
| 120 |
try:
|
| 121 |
frontal = Image.open(frontal_path)
|
| 122 |
+
processed = MODEL_STATE["processor"].format_and_preprocess_phrase_grounding_input(
|
| 123 |
frontal_image=frontal,
|
| 124 |
phrase=phrase,
|
| 125 |
return_tensors="pt"
|
| 126 |
+
).to("cpu")
|
| 127 |
|
| 128 |
+
outputs = MODEL_STATE["model"].generate(
|
| 129 |
+
**processed,
|
| 130 |
+
max_new_tokens=150,
|
| 131 |
+
use_cache=True
|
| 132 |
+
)
|
| 133 |
|
| 134 |
prompt_length = processed["input_ids"].shape[-1]
|
| 135 |
+
decoded = MODEL_STATE["processor"].decode(outputs[0][prompt_length:], skip_special_tokens=True)
|
| 136 |
+
return MODEL_STATE["processor"].convert_output_to_plaintext_or_grounded_sequence(decoded)
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
+
return f"❌ Grounding error: {str(e)}"
|
| 140 |
|
| 141 |
+
with gr.Blocks(title="MAIRA-2 Medical Assistant") as demo:
|
| 142 |
+
gr.Markdown("""# MAIRA-2 Medical Assistant
|
| 143 |
+
**Authentication required** - You need a Hugging Face account and access token to use this model.
|
| 144 |
+
1. Get your access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
|
| 145 |
+
2. Request model access at [https://huggingface.co/microsoft/maira-2](https://huggingface.co/microsoft/maira-2)
|
| 146 |
+
3. Paste your token below to begin
|
| 147 |
+
""")
|
| 148 |
|
| 149 |
+
with gr.Row():
|
| 150 |
+
hf_token = gr.Textbox(
|
| 151 |
+
label="Hugging Face Token",
|
| 152 |
+
placeholder="hf_xxxxxxxxxxxxxxxxxxxx",
|
| 153 |
+
type="password"
|
| 154 |
+
)
|
| 155 |
+
login_btn = gr.Button("Authenticate")
|
| 156 |
+
login_status = gr.Textbox(label="Authentication Status", interactive=False)
|
| 157 |
+
|
| 158 |
+
login_btn.click(
|
| 159 |
+
login,
|
| 160 |
+
inputs=hf_token,
|
| 161 |
+
outputs=login_status
|
| 162 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
with gr.Tabs():
|
| 165 |
+
with gr.Tab("Report Generation"):
|
| 166 |
+
with gr.Row():
|
| 167 |
+
with gr.Column():
|
| 168 |
+
gr.Markdown("## Current Study")
|
| 169 |
+
frontal = gr.Image(label="Frontal View", type="filepath")
|
| 170 |
+
lateral = gr.Image(label="Lateral View", type="filepath")
|
| 171 |
+
indication = gr.Textbox(label="Clinical Indication")
|
| 172 |
+
technique = gr.Textbox(label="Imaging Technique")
|
| 173 |
+
comparison = gr.Textbox(label="Comparison")
|
| 174 |
+
|
| 175 |
+
gr.Markdown("## Prior Study (Optional)")
|
| 176 |
+
prior_frontal = gr.Image(label="Prior Frontal View", type="filepath")
|
| 177 |
+
prior_lateral = gr.Image(label="Prior Lateral View", type="filepath")
|
| 178 |
+
prior_report = gr.Textbox(label="Prior Report")
|
| 179 |
+
|
| 180 |
+
grounding = gr.Checkbox(label="Include Grounding")
|
| 181 |
+
sample_btn = gr.Button("Load Sample Data")
|
| 182 |
+
|
| 183 |
+
with gr.Column():
|
| 184 |
+
report_output = gr.Textbox(label="Generated Report", lines=10)
|
| 185 |
+
generate_btn = gr.Button("Generate Report")
|
| 186 |
+
|
| 187 |
+
sample_btn.click(
|
| 188 |
+
load_sample_findings,
|
| 189 |
+
outputs=[frontal, lateral, indication, technique, comparison,
|
| 190 |
+
prior_frontal, prior_lateral, prior_report, grounding]
|
| 191 |
+
)
|
| 192 |
+
generate_btn.click(
|
| 193 |
+
generate_report,
|
| 194 |
+
inputs=[frontal, lateral, indication, technique, comparison,
|
| 195 |
+
prior_frontal, prior_lateral, prior_report, grounding],
|
| 196 |
+
outputs=report_output
|
| 197 |
+
)
|
| 198 |
|
| 199 |
+
with gr.Tab("Phrase Grounding"):
|
| 200 |
+
with gr.Row():
|
| 201 |
+
with gr.Column():
|
| 202 |
+
pg_frontal = gr.Image(label="Frontal View", type="filepath")
|
| 203 |
+
phrase = gr.Textbox(label="Phrase to Ground")
|
| 204 |
+
pg_sample_btn = gr.Button("Load Sample Data")
|
| 205 |
+
with gr.Column():
|
| 206 |
+
pg_output = gr.Textbox(label="Grounding Result", lines=3)
|
| 207 |
+
pg_btn = gr.Button("Find Phrase")
|
| 208 |
+
|
| 209 |
+
pg_sample_btn.click(
|
| 210 |
+
load_sample_phrase,
|
| 211 |
+
outputs=[pg_frontal, phrase]
|
| 212 |
+
)
|
| 213 |
+
pg_btn.click(
|
| 214 |
+
ground_phrase,
|
| 215 |
+
inputs=[pg_frontal, phrase],
|
| 216 |
+
outputs=pg_output
|
| 217 |
+
)
|
| 218 |
|
| 219 |
demo.launch()
|