ProyectoBMO / app.py
benjaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa's picture
Update app.py
d349e36 verified
raw
history blame
13 kB
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel
import torch
import torchaudio
from transformers import (
WhisperProcessor,
WhisperForConditionalGeneration,
AutoModelForCausalLM,
AutoTokenizer,
)
import io
import tempfile
import os
import requests
app = FastAPI(title="Asistente de Voz API - Versión Simple")
# ============================================
# TOKEN DE HUGGING FACE (OPCIONAL)
# ============================================
# Si quieres usar modelos privados o más cuota, obtén tu token en:
# https://huggingface.co/settings/tokens
HF_TOKEN = os.getenv("HF_TOKEN", None)
# ============================================
# CARGAR MODELOS
# ============================================
print("🔄 Cargando modelos...")
# 1. WHISPER (Speech-to-Text)
print("📝 Cargando Whisper...")
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
whisper_model.eval()
# 2. MODELO DE LENGUAJE (más pequeño y rápido)
print("🤖 Cargando modelo de lenguaje...")
# Usando GPT-2 pequeño en español
llm_tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
llm_model = AutoModelForCausalLM.from_pretrained("DeepESP/gpt2-spanish-medium")
llm_model.eval()
print("✅ Modelos cargados!\n")
# ============================================
# MODELOS DE DATOS
# ============================================
class ChatRequest(BaseModel):
question: str
max_length: int = 150
class TTSRequest(BaseModel):
text: str
# ============================================
# FUNCIONES AUXILIARES
# ============================================
def process_audio_file(audio_bytes):
"""Procesa bytes de audio y los convierte al formato correcto"""
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_bytes)
tmp_path = tmp.name
try:
# Cargar audio
waveform, sample_rate = torchaudio.load(tmp_path)
# Remuestrear a 16kHz
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
# Convertir a mono
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
return waveform.squeeze().numpy()
finally:
os.unlink(tmp_path)
# ============================================
# ENDPOINT 1: TRANSCRIPCIÓN
# ============================================
@app.post("/transcribe")
async def transcribe_audio(file: UploadFile = File(...)):
"""Convierte audio WAV a texto"""
try:
print(f"📥 Recibiendo audio: {file.filename}")
# Procesar audio
audio_bytes = await file.read()
waveform = process_audio_file(audio_bytes)
# Transcribir con Whisper
input_features = whisper_processor(
waveform,
sampling_rate=16000,
return_tensors="pt"
).input_features
with torch.no_grad():
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(
predicted_ids,
skip_special_tokens=True
)[0]
print(f"✅ Transcrito: {transcription}")
return JSONResponse({
"text": transcription,
"success": True
})
except Exception as e:
print(f"❌ Error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# ============================================
# ENDPOINT 2: CHAT IA
# ============================================
@app.post("/chat")
async def chat(request: ChatRequest):
"""Genera respuesta de IA"""
try:
question = request.question.strip()
print(f"💬 Pregunta: {question}")
if not question:
return JSONResponse({
"answer": "No escuché ninguna pregunta",
"success": False
})
# Crear contexto en español
prompt = f"""Eres un asistente virtual amigable. Responde de forma breve y clara.
Pregunta: {question}
Respuesta:"""
# Generar respuesta
inputs = llm_tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
outputs = llm_model.generate(
inputs,
max_length=request.max_length,
num_return_sequences=1,
temperature=0.8,
top_p=0.9,
do_sample=True,
pad_token_id=llm_tokenizer.eos_token_id,
repetition_penalty=1.2
)
# Decodificar
full_text = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extraer solo la respuesta
if "Respuesta:" in full_text:
answer = full_text.split("Respuesta:")[-1].strip()
else:
answer = full_text.replace(prompt, "").strip()
# Limpiar y limitar
answer = answer.split("\n")[0].strip() # Solo primera línea
if len(answer) > 200:
answer = answer[:200].rsplit(" ", 1)[0] + "..."
# Si está vacía, dar respuesta por defecto
if not answer or len(answer) < 5:
answer = "Interesante pregunta. Déjame pensar en eso."
print(f"✅ Respuesta: {answer}")
return JSONResponse({
"answer": answer,
"success": True
})
except Exception as e:
print(f"❌ Error: {str(e)}")
return JSONResponse({
"answer": "Lo siento, tuve un problema procesando tu pregunta",
"success": False
})
# ============================================
# ENDPOINT 3: TTS (usando API de HF)
# ============================================
@app.post("/tts")
async def text_to_speech(request: TTSRequest):
"""
Convierte texto a voz usando API de Hugging Face
IMPORTANTE: Requiere conexión a internet
"""
try:
text = request.text.strip()
print(f"🔊 Generando voz: {text[:50]}...")
if not text:
raise HTTPException(status_code=400, detail="Texto vacío")
# Limitar longitud
if len(text) > 300:
text = text[:300] + "..."
# Usar API de Hugging Face para TTS
# Modelo: Facebook MMS TTS español
API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-spa"
headers = {}
if HF_TOKEN:
headers["Authorization"] = f"Bearer {HF_TOKEN}"
# Hacer request a la API
response = requests.post(
API_URL,
headers=headers,
json={"inputs": text},
timeout=30
)
if response.status_code == 200:
print(f"✅ Audio generado: {len(response.content)} bytes")
return StreamingResponse(
io.BytesIO(response.content),
media_type="audio/flac",
headers={
"Content-Disposition": "attachment; filename=speech.flac"
}
)
else:
print(f"❌ Error API TTS: {response.status_code}")
raise HTTPException(
status_code=response.status_code,
detail=f"Error en TTS: {response.text}"
)
except requests.exceptions.Timeout:
print("⏱️ Timeout en TTS")
raise HTTPException(status_code=504, detail="Timeout generando audio")
except Exception as e:
print(f"❌ Error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# ============================================
# ENDPOINT 4: PROCESO COMPLETO
# ============================================
@app.post("/complete")
async def complete_conversation(file: UploadFile = File(...)):
"""
Proceso completo: Audio → Texto → IA → Audio
"""
try:
print("\n" + "="*50)
print("🔄 PROCESO COMPLETO INICIADO")
print("="*50)
# PASO 1: Transcribir
print("\n📝 PASO 1: Transcribiendo...")
audio_bytes = await file.read()
waveform = process_audio_file(audio_bytes)
input_features = whisper_processor(
waveform,
sampling_rate=16000,
return_tensors="pt"
).input_features
with torch.no_grad():
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(
predicted_ids,
skip_special_tokens=True
)[0].strip()
print(f"✅ Transcripción: {transcription}")
if not transcription or len(transcription) < 3:
transcription = "No te escuché bien"
# PASO 2: Generar respuesta
print("\n🤖 PASO 2: Generando respuesta IA...")
prompt = f"""Eres un asistente virtual amigable. Responde breve.
Pregunta: {transcription}
Respuesta:"""
inputs = llm_tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
outputs = llm_model.generate(
inputs,
max_length=150,
temperature=0.8,
top_p=0.9,
do_sample=True,
pad_token_id=llm_tokenizer.eos_token_id,
repetition_penalty=1.2
)
full_text = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "Respuesta:" in full_text:
answer = full_text.split("Respuesta:")[-1].strip()
else:
answer = full_text.replace(prompt, "").strip()
answer = answer.split("\n")[0].strip()
if len(answer) > 200:
answer = answer[:200].rsplit(" ", 1)[0] + "..."
if not answer or len(answer) < 5:
answer = "Entiendo tu pregunta."
print(f"✅ Respuesta: {answer}")
# PASO 3: Generar audio
print("\n🔊 PASO 3: Generando audio...")
API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-spa"
headers = {}
if HF_TOKEN:
headers["Authorization"] = f"Bearer {HF_TOKEN}"
response = requests.post(
API_URL,
headers=headers,
json={"inputs": answer},
timeout=30
)
if response.status_code != 200:
print(f"⚠️ Error TTS, usando respuesta de texto")
return JSONResponse({
"transcription": transcription,
"answer": answer,
"audio_error": True
})
print("✅ Audio generado correctamente")
print("="*50 + "\n")
# Retornar audio con metadata en headers
return StreamingResponse(
io.BytesIO(response.content),
media_type="audio/flac",
headers={
"X-Transcription": transcription,
"X-Answer": answer,
"Content-Disposition": "attachment; filename=response.flac"
}
)
except Exception as e:
print(f"❌ ERROR COMPLETO: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# ============================================
# ENDPOINTS INFORMATIVOS
# ============================================
@app.get("/")
async def root():
return {
"message": "🤖 API Asistente de Voz ESP32",
"version": "2.0 - Simplificada",
"status": "online",
"endpoints": {
"POST /transcribe": "Audio WAV → Texto",
"POST /chat": "Pregunta → Respuesta IA",
"POST /tts": "Texto → Audio",
"POST /complete": "Audio → Audio (recomendado)"
},
"models": {
"stt": "openai/whisper-small",
"llm": "DeepESP/gpt2-spanish-medium",
"tts": "facebook/mms-tts-spa (API)"
}
}
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"models_loaded": {
"whisper": whisper_model is not None,
"llm": llm_model is not None,
"tts": "API externa"
}
}
@app.get("/test")
async def test_endpoint():
"""Endpoint de prueba simple"""
return {
"message": "¡Servidor funcionando correctamente!",
"test": "OK"
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)