requirements.txt
Browse filestransformers
gradio
torch
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
# Load summarization models
|
| 5 |
+
models = {
|
| 6 |
+
"BART Large CNN": pipeline("summarization", model="facebook/bart-large-cnn"),
|
| 7 |
+
"T5 Small": pipeline("summarization", model="t5-small")
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
# Sentiment analysis pipeline
|
| 11 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
| 12 |
+
|
| 13 |
+
def summarize_compare(text):
|
| 14 |
+
summaries = {}
|
| 15 |
+
sentiments = {}
|
| 16 |
+
|
| 17 |
+
for model_name, summarizer in models.items():
|
| 18 |
+
summary = summarizer(text, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
| 19 |
+
sentiment = sentiment_analyzer(summary)[0]
|
| 20 |
+
summaries[model_name] = summary
|
| 21 |
+
sentiments[model_name] = f"{sentiment['label']} ({round(sentiment['score'], 2)})"
|
| 22 |
+
|
| 23 |
+
return summaries["BART Large CNN"], sentiments["BART Large CNN"], summaries["T5 Small"], sentiments["T5 Small"]
|
| 24 |
+
|
| 25 |
+
demo = gr.Interface(
|
| 26 |
+
fn=summarize_compare,
|
| 27 |
+
inputs=gr.Textbox(lines=10, placeholder="Paste your text here..."),
|
| 28 |
+
outputs=[
|
| 29 |
+
gr.Textbox(label="BART Large CNN Summary"),
|
| 30 |
+
gr.Textbox(label="BART Large CNN Sentiment"),
|
| 31 |
+
gr.Textbox(label="T5 Small Summary"),
|
| 32 |
+
gr.Textbox(label="T5 Small Sentiment")
|
| 33 |
+
],
|
| 34 |
+
title="Multi-Model Text Summarizer + Sentiment Analyzer",
|
| 35 |
+
description="Compare summaries from multiple models and see the sentiment of each summary."
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
demo.launch()
|