Adds support for hydra
Browse files
train.py
CHANGED
|
@@ -1,61 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import lightning as L
|
| 2 |
-
import torch
|
| 3 |
from lightning.pytorch.callbacks import (
|
| 4 |
-
ModelCheckpoint,
|
| 5 |
-
LearningRateMonitor,
|
| 6 |
EarlyStopping,
|
|
|
|
|
|
|
| 7 |
)
|
| 8 |
from lightning.pytorch.loggers import TensorBoardLogger
|
| 9 |
-
|
| 10 |
-
from src.
|
| 11 |
from src.model import DRModel
|
|
|
|
| 12 |
|
| 13 |
-
# seed everything for reproducibility
|
| 14 |
-
SEED = 42
|
| 15 |
-
L.seed_everything(SEED, workers=True)
|
| 16 |
-
torch.set_float32_matmul_precision("high")
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
# Init
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
filename="{epoch}-{step}-{val_loss:.2f}-{val_acc:.2f}-{val_kappa:.2f}",
|
| 37 |
-
)
|
| 38 |
|
| 39 |
-
# Init
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
# Init trainer
|
| 51 |
-
trainer = L.Trainer(
|
| 52 |
-
max_epochs=50,
|
| 53 |
-
accelerator="auto",
|
| 54 |
-
devices="auto",
|
| 55 |
-
logger=logger,
|
| 56 |
-
callbacks=[checkpoint_callback, lr_monitor, early_stopping],
|
| 57 |
-
# check_val_every_n_epoch=4,
|
| 58 |
-
)
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
|
|
|
| 1 |
+
from os.path import join
|
| 2 |
+
|
| 3 |
+
import hydra
|
| 4 |
import lightning as L
|
|
|
|
| 5 |
from lightning.pytorch.callbacks import (
|
|
|
|
|
|
|
| 6 |
EarlyStopping,
|
| 7 |
+
LearningRateMonitor,
|
| 8 |
+
ModelCheckpoint,
|
| 9 |
)
|
| 10 |
from lightning.pytorch.loggers import TensorBoardLogger
|
| 11 |
+
from omegaconf import DictConfig
|
| 12 |
+
from src.data_module import DRDataModule
|
| 13 |
from src.model import DRModel
|
| 14 |
+
from src.utils import generate_run_id
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
@hydra.main(version_base=None, config_path="conf", config_name="config")
|
| 18 |
+
def train(cfg: DictConfig) -> None:
|
| 19 |
+
# generate unique run id based on current date & time
|
| 20 |
+
run_id = generate_run_id()
|
| 21 |
|
| 22 |
+
# Seed everything for reproducibility
|
| 23 |
+
L.seed_everything(cfg.seed, workers=True)
|
| 24 |
+
# torch.set_float32_matmul_precision("high")
|
| 25 |
|
| 26 |
+
# Initialize DataModule
|
| 27 |
+
dm = DRDataModule(
|
| 28 |
+
train_csv_path=cfg.train_csv_path,
|
| 29 |
+
val_csv_path=cfg.val_csv_path,
|
| 30 |
+
image_size=cfg.image_size,
|
| 31 |
+
batch_size=cfg.batch_size,
|
| 32 |
+
num_workers=cfg.num_workers,
|
| 33 |
+
use_class_weighting=cfg.use_class_weighting,
|
| 34 |
+
use_weighted_sampler=cfg.use_weighted_sampler,
|
| 35 |
+
)
|
| 36 |
+
dm.setup()
|
| 37 |
|
| 38 |
+
# Init model from datamodule's attributes
|
| 39 |
+
model = DRModel(
|
| 40 |
+
num_classes=dm.num_classes,
|
| 41 |
+
model_name=cfg.model_name,
|
| 42 |
+
learning_rate=cfg.learning_rate,
|
| 43 |
+
class_weights=dm.class_weights,
|
| 44 |
+
use_scheduler=cfg.use_scheduler,
|
| 45 |
+
)
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Init logger
|
| 48 |
+
logger = TensorBoardLogger(save_dir=cfg.logs_dir, name="", version=run_id)
|
| 49 |
+
# Init callbacks
|
| 50 |
+
checkpoint_callback = ModelCheckpoint(
|
| 51 |
+
monitor="val_loss",
|
| 52 |
+
mode="min",
|
| 53 |
+
save_top_k=2,
|
| 54 |
+
dirpath=join(cfg.checkpoint_dirpath, run_id),
|
| 55 |
+
filename="{epoch}-{step}-{val_loss:.2f}-{val_acc:.2f}-{val_kappa:.2f}",
|
| 56 |
+
)
|
| 57 |
|
| 58 |
+
# Init LearningRateMonitor
|
| 59 |
+
lr_monitor = LearningRateMonitor(logging_interval="step")
|
| 60 |
+
|
| 61 |
+
# early stopping
|
| 62 |
+
early_stopping = EarlyStopping(
|
| 63 |
+
monitor="val_loss",
|
| 64 |
+
patience=10,
|
| 65 |
+
verbose=True,
|
| 66 |
+
mode="min",
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Initialize Trainer
|
| 70 |
+
trainer = L.Trainer(
|
| 71 |
+
max_epochs=cfg.max_epochs,
|
| 72 |
+
accelerator="auto",
|
| 73 |
+
devices="auto",
|
| 74 |
+
logger=logger,
|
| 75 |
+
callbacks=[checkpoint_callback, lr_monitor, early_stopping],
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Train the model
|
| 79 |
+
trainer.fit(model, dm)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
train()
|