Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
from transformers import pipeline, VitsTokenizer, VitsModel, set_seed
|
|
|
|
| 4 |
import torch
|
| 5 |
import io
|
| 6 |
import soundfile as sf
|
| 7 |
-
from nemo.collections.asr.models import EncDecMultiTaskModel
|
| 8 |
-
|
| 9 |
-
# Load the ASR model
|
| 10 |
-
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
decode_cfg.beam.beam_size = 1
|
| 15 |
-
canary_model.change_decoding_strategy(decode_cfg)
|
| 16 |
|
| 17 |
# Initialize LLM pipeline
|
| 18 |
generator = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
|
@@ -27,10 +21,10 @@ def transcribe_generate_and_speak(audio):
|
|
| 27 |
y /= np.max(np.abs(y))
|
| 28 |
|
| 29 |
# Transcribe audio
|
| 30 |
-
asr_output =
|
| 31 |
|
| 32 |
# Generate text based on ASR output
|
| 33 |
-
generated_text = generator(asr_output
|
| 34 |
|
| 35 |
# Generate audio from text
|
| 36 |
inputs = tokenizer(text=generated_text, return_tensors="pt")
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import pipeline, VitsTokenizer, VitsModel, set_seed
|
| 3 |
+
import numpy as np
|
| 4 |
import torch
|
| 5 |
import io
|
| 6 |
import soundfile as sf
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Initialize ASR pipeline
|
| 9 |
+
transcriber = pipeline("automatic-speech-recognition", model="facebook/s2t-small-librispeech-asr")
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Initialize LLM pipeline
|
| 12 |
generator = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
|
|
|
| 21 |
y /= np.max(np.abs(y))
|
| 22 |
|
| 23 |
# Transcribe audio
|
| 24 |
+
asr_output = transcriber({"sampling_rate": sr, "raw": y})["text"]
|
| 25 |
|
| 26 |
# Generate text based on ASR output
|
| 27 |
+
generated_text = generator(asr_output, max_length=100, num_return_sequences=1)[0]['generated_text']
|
| 28 |
|
| 29 |
# Generate audio from text
|
| 30 |
inputs = tokenizer(text=generated_text, return_tensors="pt")
|