Spaces:
Runtime error
Runtime error
| import os | |
| import requests | |
| import json | |
| import time | |
| import gradio as gr | |
| from transformers import AutoTokenizer | |
| import psycopg2 | |
| import socket | |
| hostname=socket.gethostname() | |
| IPAddr=socket.gethostbyname(hostname) | |
| print("Your Computer Name is:" + hostname) | |
| print("Your Computer IP Address is:" + IPAddr) | |
| DESCRIPTION = """ | |
| # MediaTek Research Breexe-8x7B | |
| Breexe-8x7B is a language model family that builds on top of [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1), | |
| specifically intended for Traditional Chinese use. | |
| [Breexe-8x7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breexe-8x7B-Instruct-v0_1) demonstrates impressive performance in benchmarks for Traditional Chinese and English, on par with OpenAI's gpt-3.5-turbo-1106. | |
| *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.* | |
| **免責聲明: Breexe-8x7B-Instruct 並未針對問答進行安全保護,因此語言模型的任何回應不代表 MediaTek Research 立場。** | |
| """ | |
| LICENSE = """ | |
| """ | |
| DEFAULT_SYSTEM_PROMPT = "You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan." | |
| # API_URL = os.environ.get("API_URL") | |
| API_URL = "https://api-mtkresearch.com/v1" | |
| # TOKEN = os.environ.get("TOKEN") | |
| TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjoyLCJ1c2VybmFtZSI6ImdlbmVyYWxfcHVibGljIiwibm90ZSI6ImdlbmVyYWwgcHVibGljIn0.kCp68nRw3RSh3jbMm8FvhG0NIkStflgI1wTHLviRPQE" | |
| TOKENIZER_REPO = "MediaTek-Research/Breeze-7B-Instruct-v1_0" # tokenization methods are same as BreeXe | |
| API_MODEL_TYPE = "breexe-8x7b-instruct-v01" | |
| HEADERS = { | |
| "Authorization": f"Bearer {TOKEN}", | |
| "Content-Type": "application/json", | |
| "accept": "application/json" | |
| } | |
| MAX_SEC = 30 | |
| MAX_INPUT_LENGTH = 5000 | |
| tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_REPO, use_auth_token=os.environ.get("HF_TOKEN")) | |
| def refusal_condition(query): | |
| # 不要再問這些問題啦! | |
| query_remove_space = query.replace(' ', '').lower() | |
| is_including_tw = False | |
| for x in ['台灣', '台湾', 'taiwan', 'tw', '中華民國', '中华民国']: | |
| if x in query_remove_space: | |
| is_including_tw = True | |
| is_including_cn = False | |
| for x in ['中國', '中国', 'cn', 'china', '大陸', '內地', '大陆', '内地', '中華人民共和國', '中华人民共和国']: | |
| if x in query_remove_space: | |
| is_including_cn = True | |
| if is_including_tw and is_including_cn: | |
| return True | |
| for x in ['一個中國', '兩岸', '一中原則', '一中政策', '一个中国', '两岸', '一中原则']: | |
| if x in query_remove_space: | |
| return True | |
| return False | |
| with gr.Blocks() as demo: | |
| gr.Markdown(DESCRIPTION) | |
| system_prompt = gr.Textbox(label='System prompt', | |
| value=DEFAULT_SYSTEM_PROMPT, | |
| lines=1) | |
| with gr.Accordion(label='Advanced options', open=False): | |
| max_new_tokens = gr.Slider( | |
| label='Max new tokens', | |
| minimum=32, | |
| maximum=2048, | |
| step=1, | |
| value=1024, | |
| ) | |
| temperature = gr.Slider( | |
| label='Temperature', | |
| minimum=0.01, | |
| maximum=0.5, | |
| step=0.01, | |
| value=0.01, | |
| ) | |
| top_p = gr.Slider( | |
| label='Top-p (nucleus sampling)', | |
| minimum=0.01, | |
| maximum=0.99, | |
| step=0.01, | |
| value=0.01, | |
| ) | |
| chatbot = gr.Chatbot(show_copy_button=True, show_share_button=True, ) | |
| with gr.Row(): | |
| msg = gr.Textbox( | |
| container=False, | |
| show_label=False, | |
| placeholder='Type a message...', | |
| scale=10, | |
| lines=6 | |
| ) | |
| submit_button = gr.Button('Submit', | |
| variant='primary', | |
| scale=1, | |
| min_width=0) | |
| with gr.Row(): | |
| retry_button = gr.Button('🔄 Retry', variant='secondary') | |
| undo_button = gr.Button('↩️ Undo', variant='secondary') | |
| clear = gr.Button('🗑️ Clear', variant='secondary') | |
| saved_input = gr.State() | |
| def user(user_message, history): | |
| return "", history + [[user_message, None]] | |
| def connect_server(data): | |
| for _ in range(3): | |
| s = requests.Session() | |
| r = s.post(API_URL, headers=HEADERS, json=data, stream=True, timeout=30) | |
| time.sleep(1) | |
| if r.status_code == 200: | |
| return r | |
| return None | |
| def stream_response_from_server(r): | |
| # start_time = time.time() | |
| keep_streaming = True | |
| for line in r.iter_lines(): | |
| # if time.time() - start_time > MAX_SEC: | |
| # keep_streaming = False | |
| # break | |
| if line and keep_streaming: | |
| if r.status_code != 200: | |
| continue | |
| json_response = json.loads(line) | |
| if "fragment" not in json_response["result"]: | |
| keep_streaming = False | |
| break | |
| delta = json_response["result"]["fragment"]["data"]["text"] | |
| yield delta | |
| # start_time = time.time() | |
| def bot(history, max_new_tokens, temperature, top_p, system_prompt): | |
| chat_data = [] | |
| system_prompt = system_prompt.strip() | |
| if system_prompt: | |
| chat_data.append({"role": "system", "content": system_prompt}) | |
| for user_msg, assistant_msg in history: | |
| chat_data.append({"role": "user", "content": user_msg if user_msg is not None else ''}) | |
| chat_data.append({"role": "assistant", "content": assistant_msg if assistant_msg is not None else ''}) | |
| message = tokenizer.apply_chat_template(chat_data, tokenize=False) | |
| message = message[3:] # remove SOT token | |
| if len(message) > MAX_INPUT_LENGTH: | |
| raise Exception() | |
| response = '[ERROR]' | |
| if refusal_condition(history[-1][0]): | |
| history = [['[安全拒答啟動]', '[安全拒答啟動] 請清除再開啟對話']] | |
| response = '[REFUSAL]' | |
| yield history | |
| else: | |
| data = { | |
| "model_type": API_MODEL_TYPE, | |
| "prompt": str(message), | |
| "parameters": { | |
| "temperature": float(temperature), | |
| "top_p": float(top_p), | |
| "max_new_tokens": int(max_new_tokens), | |
| "repetition_penalty": 1.1 | |
| } | |
| } | |
| r = connect_server(data) | |
| if r is not None: | |
| for delta in stream_response_from_server(r): | |
| if history[-1][1] is None: | |
| history[-1][1] = '' | |
| history[-1][1] += delta | |
| yield history | |
| if history[-1][1].endswith('</s>'): | |
| history[-1][1] = history[-1][1][:-4] | |
| yield history | |
| response = history[-1][1] | |
| if refusal_condition(history[-1][1]): | |
| history[-1][1] = history[-1][1] + '\n\n**[免責聲明: 此模型並未針對問答進行安全保護,因此語言模型的任何回應不代表 MediaTek Research 立場。]**' | |
| yield history | |
| else: | |
| del history[-1] | |
| yield history | |
| print('== Record ==\nQuery: {query}\nResponse: {response}'.format(query=repr(message), response=repr(history[-1][1]))) | |
| msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
| fn=bot, | |
| inputs=[ | |
| chatbot, | |
| max_new_tokens, | |
| temperature, | |
| top_p, | |
| system_prompt, | |
| ], | |
| outputs=chatbot | |
| ) | |
| submit_button.click( | |
| user, [msg, chatbot], [msg, chatbot], queue=False | |
| ).then( | |
| fn=bot, | |
| inputs=[ | |
| chatbot, | |
| max_new_tokens, | |
| temperature, | |
| top_p, | |
| system_prompt, | |
| ], | |
| outputs=chatbot | |
| ) | |
| def delete_prev_fn( | |
| history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: | |
| try: | |
| message, _ = history.pop() | |
| except IndexError: | |
| message = '' | |
| return history, message or '' | |
| def display_input(message: str, | |
| history: list[tuple[str, str]]) -> list[tuple[str, str]]: | |
| history.append((message, '')) | |
| return history | |
| retry_button.click( | |
| fn=delete_prev_fn, | |
| inputs=chatbot, | |
| outputs=[chatbot, saved_input], | |
| api_name=False, | |
| queue=False, | |
| ).then( | |
| fn=display_input, | |
| inputs=[saved_input, chatbot], | |
| outputs=chatbot, | |
| api_name=False, | |
| queue=False, | |
| ).then( | |
| fn=bot, | |
| inputs=[ | |
| chatbot, | |
| max_new_tokens, | |
| temperature, | |
| top_p, | |
| system_prompt, | |
| ], | |
| outputs=chatbot, | |
| ) | |
| undo_button.click( | |
| fn=delete_prev_fn, | |
| inputs=chatbot, | |
| outputs=[chatbot, saved_input], | |
| api_name=False, | |
| queue=False, | |
| ).then( | |
| fn=lambda x: x, | |
| inputs=[saved_input], | |
| outputs=msg, | |
| api_name=False, | |
| queue=False, | |
| ) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| gr.Markdown(LICENSE) | |
| demo.queue(concurrency_count=4, max_size=128) | |
| demo.launch() |