Spaces:
Runtime error
Runtime error
| import argparse | |
| import datetime | |
| import logging | |
| import inspect | |
| import math | |
| import os | |
| from typing import Dict, Optional, Tuple | |
| from omegaconf import OmegaConf | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import diffusers | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import set_seed | |
| from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import check_min_version | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from tuneavideo.models.unet import UNet3DConditionModel | |
| from tuneavideo.data.dataset import TuneAVideoDataset | |
| from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline | |
| from tuneavideo.util import save_videos_grid | |
| from einops import rearrange | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.10.0.dev0") | |
| logger = get_logger(__name__, log_level="INFO") | |
| def main( | |
| pretrained_model_path: str, | |
| output_dir: str, | |
| train_data: Dict, | |
| validation_data: Dict, | |
| validation_steps: int = 100, | |
| trainable_modules: Tuple[str] = ( | |
| "attn1.to_q", | |
| "attn2.to_q", | |
| "attn_temp", | |
| ), | |
| train_batch_size: int = 1, | |
| max_train_steps: int = 500, | |
| learning_rate: float = 3e-5, | |
| scale_lr: bool = False, | |
| lr_scheduler: str = "constant", | |
| lr_warmup_steps: int = 0, | |
| adam_beta1: float = 0.9, | |
| adam_beta2: float = 0.999, | |
| adam_weight_decay: float = 1e-2, | |
| adam_epsilon: float = 1e-08, | |
| max_grad_norm: float = 1.0, | |
| gradient_accumulation_steps: int = 1, | |
| gradient_checkpointing: bool = True, | |
| checkpointing_steps: int = 500, | |
| resume_from_checkpoint: Optional[str] = None, | |
| mixed_precision: Optional[str] = "fp16", | |
| use_8bit_adam: bool = False, | |
| enable_xformers_memory_efficient_attention: bool = True, | |
| seed: Optional[int] = None, | |
| ): | |
| *_, config = inspect.getargvalues(inspect.currentframe()) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=gradient_accumulation_steps, | |
| mixed_precision=mixed_precision, | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if seed is not None: | |
| set_seed(seed) | |
| # Handle the output folder creation | |
| if accelerator.is_main_process: | |
| now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
| output_dir = os.path.join(output_dir, now) | |
| os.makedirs(output_dir, exist_ok=True) | |
| OmegaConf.save(config, os.path.join(output_dir, 'config.yaml')) | |
| # Load scheduler, tokenizer and models. | |
| noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
| tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
| text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
| vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
| unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet") | |
| # Freeze vae and text_encoder | |
| vae.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| for name, module in unet.named_modules(): | |
| if name.endswith(tuple(trainable_modules)): | |
| for params in module.parameters(): | |
| params.requires_grad = True | |
| if enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| unet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| if gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| if scale_lr: | |
| learning_rate = ( | |
| learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes | |
| ) | |
| # Initialize the optimizer | |
| if use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
| ) | |
| optimizer_cls = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_cls = torch.optim.AdamW | |
| optimizer = optimizer_cls( | |
| unet.parameters(), | |
| lr=learning_rate, | |
| betas=(adam_beta1, adam_beta2), | |
| weight_decay=adam_weight_decay, | |
| eps=adam_epsilon, | |
| ) | |
| # Get the training dataset | |
| train_dataset = TuneAVideoDataset(**train_data) | |
| # Preprocessing the dataset | |
| train_dataset.prompt_ids = tokenizer( | |
| train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
| ).input_ids[0] | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, batch_size=train_batch_size | |
| ) | |
| # Get the validation pipeline | |
| validation_pipeline = TuneAVideoPipeline( | |
| vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
| scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
| ) | |
| # Scheduler | |
| lr_scheduler = get_scheduler( | |
| lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps, | |
| num_training_steps=max_train_steps * gradient_accumulation_steps, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move text_encode and vae to gpu and cast to weight_dtype | |
| text_encoder.to(accelerator.device, dtype=weight_dtype) | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | |
| # Afterwards we recalculate our number of training epochs | |
| num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("text2video-fine-tune") | |
| # Train! | |
| total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if resume_from_checkpoint: | |
| if resume_from_checkpoint != "latest": | |
| path = os.path.basename(resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| resume_step = global_step % num_update_steps_per_epoch | |
| # Only show the progress bar once on each machine. | |
| progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process) | |
| progress_bar.set_description("Steps") | |
| for epoch in range(first_epoch, num_train_epochs): | |
| unet.train() | |
| train_loss = 0.0 | |
| for step, batch in enumerate(train_dataloader): | |
| # Skip steps until we reach the resumed step | |
| if resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
| if step % gradient_accumulation_steps == 0: | |
| progress_bar.update(1) | |
| continue | |
| with accelerator.accumulate(unet): | |
| # Convert videos to latent space | |
| pixel_values = batch["pixel_values"].to(weight_dtype) | |
| video_length = pixel_values.shape[1] | |
| pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") | |
| latents = vae.encode(pixel_values).latent_dist.sample() | |
| latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) | |
| latents = latents * 0.18215 | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each video | |
| timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Get the text embedding for conditioning | |
| encoder_hidden_states = text_encoder(batch["prompt_ids"])[0] | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}") | |
| # Predict the noise residual and compute loss | |
| model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
| # Gather the losses across all processes for logging (if we use distributed training). | |
| avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean() | |
| train_loss += avg_loss.item() / gradient_accumulation_steps | |
| # Backpropagate | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| accelerator.log({"train_loss": train_loss}, step=global_step) | |
| train_loss = 0.0 | |
| if global_step % checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| save_path = os.path.join(output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if global_step % validation_steps == 0: | |
| if accelerator.is_main_process: | |
| save_path = os.path.join(output_dir, f"samples/sample-{global_step}.gif") | |
| samples = [] | |
| generator = torch.Generator(device=latents.device) | |
| generator.manual_seed(seed) | |
| for idx, prompt in enumerate(validation_data.prompts): | |
| sample = validation_pipeline(prompt, generator=generator, **validation_data).videos | |
| save_videos_grid(sample, os.path.join(output_dir, f"samples/sample-{global_step}/{prompt}.gif")) | |
| samples.append(sample) | |
| samples = torch.concat(samples) | |
| save_videos_grid(samples, save_path) | |
| logger.info(f"Saved samples to {save_path}") | |
| logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if global_step >= max_train_steps: | |
| break | |
| # Create the pipeline using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = accelerator.unwrap_model(unet) | |
| pipeline = TuneAVideoPipeline.from_pretrained( | |
| pretrained_model_path, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| unet=unet, | |
| ) | |
| pipeline.save_pretrained(output_dir) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml") | |
| args = parser.parse_args() | |
| main(**OmegaConf.load(args.config)) | |