Spaces:
Running
Running
| # | |
| # The Python Imaging Library. | |
| # $Id$ | |
| # | |
| # standard image operations | |
| # | |
| # History: | |
| # 2001-10-20 fl Created | |
| # 2001-10-23 fl Added autocontrast operator | |
| # 2001-12-18 fl Added Kevin's fit operator | |
| # 2004-03-14 fl Fixed potential division by zero in equalize | |
| # 2005-05-05 fl Fixed equalize for low number of values | |
| # | |
| # Copyright (c) 2001-2004 by Secret Labs AB | |
| # Copyright (c) 2001-2004 by Fredrik Lundh | |
| # | |
| # See the README file for information on usage and redistribution. | |
| # | |
| import functools | |
| import operator | |
| import re | |
| from . import ExifTags, Image, ImagePalette | |
| # | |
| # helpers | |
| def _border(border): | |
| if isinstance(border, tuple): | |
| if len(border) == 2: | |
| left, top = right, bottom = border | |
| elif len(border) == 4: | |
| left, top, right, bottom = border | |
| else: | |
| left = top = right = bottom = border | |
| return left, top, right, bottom | |
| def _color(color, mode): | |
| if isinstance(color, str): | |
| from . import ImageColor | |
| color = ImageColor.getcolor(color, mode) | |
| return color | |
| def _lut(image, lut): | |
| if image.mode == "P": | |
| # FIXME: apply to lookup table, not image data | |
| msg = "mode P support coming soon" | |
| raise NotImplementedError(msg) | |
| elif image.mode in ("L", "RGB"): | |
| if image.mode == "RGB" and len(lut) == 256: | |
| lut = lut + lut + lut | |
| return image.point(lut) | |
| else: | |
| msg = "not supported for this image mode" | |
| raise OSError(msg) | |
| # | |
| # actions | |
| def autocontrast(image, cutoff=0, ignore=None, mask=None, preserve_tone=False): | |
| """ | |
| Maximize (normalize) image contrast. This function calculates a | |
| histogram of the input image (or mask region), removes ``cutoff`` percent of the | |
| lightest and darkest pixels from the histogram, and remaps the image | |
| so that the darkest pixel becomes black (0), and the lightest | |
| becomes white (255). | |
| :param image: The image to process. | |
| :param cutoff: The percent to cut off from the histogram on the low and | |
| high ends. Either a tuple of (low, high), or a single | |
| number for both. | |
| :param ignore: The background pixel value (use None for no background). | |
| :param mask: Histogram used in contrast operation is computed using pixels | |
| within the mask. If no mask is given the entire image is used | |
| for histogram computation. | |
| :param preserve_tone: Preserve image tone in Photoshop-like style autocontrast. | |
| .. versionadded:: 8.2.0 | |
| :return: An image. | |
| """ | |
| if preserve_tone: | |
| histogram = image.convert("L").histogram(mask) | |
| else: | |
| histogram = image.histogram(mask) | |
| lut = [] | |
| for layer in range(0, len(histogram), 256): | |
| h = histogram[layer : layer + 256] | |
| if ignore is not None: | |
| # get rid of outliers | |
| try: | |
| h[ignore] = 0 | |
| except TypeError: | |
| # assume sequence | |
| for ix in ignore: | |
| h[ix] = 0 | |
| if cutoff: | |
| # cut off pixels from both ends of the histogram | |
| if not isinstance(cutoff, tuple): | |
| cutoff = (cutoff, cutoff) | |
| # get number of pixels | |
| n = 0 | |
| for ix in range(256): | |
| n = n + h[ix] | |
| # remove cutoff% pixels from the low end | |
| cut = n * cutoff[0] // 100 | |
| for lo in range(256): | |
| if cut > h[lo]: | |
| cut = cut - h[lo] | |
| h[lo] = 0 | |
| else: | |
| h[lo] -= cut | |
| cut = 0 | |
| if cut <= 0: | |
| break | |
| # remove cutoff% samples from the high end | |
| cut = n * cutoff[1] // 100 | |
| for hi in range(255, -1, -1): | |
| if cut > h[hi]: | |
| cut = cut - h[hi] | |
| h[hi] = 0 | |
| else: | |
| h[hi] -= cut | |
| cut = 0 | |
| if cut <= 0: | |
| break | |
| # find lowest/highest samples after preprocessing | |
| for lo in range(256): | |
| if h[lo]: | |
| break | |
| for hi in range(255, -1, -1): | |
| if h[hi]: | |
| break | |
| if hi <= lo: | |
| # don't bother | |
| lut.extend(list(range(256))) | |
| else: | |
| scale = 255.0 / (hi - lo) | |
| offset = -lo * scale | |
| for ix in range(256): | |
| ix = int(ix * scale + offset) | |
| if ix < 0: | |
| ix = 0 | |
| elif ix > 255: | |
| ix = 255 | |
| lut.append(ix) | |
| return _lut(image, lut) | |
| def colorize(image, black, white, mid=None, blackpoint=0, whitepoint=255, midpoint=127): | |
| """ | |
| Colorize grayscale image. | |
| This function calculates a color wedge which maps all black pixels in | |
| the source image to the first color and all white pixels to the | |
| second color. If ``mid`` is specified, it uses three-color mapping. | |
| The ``black`` and ``white`` arguments should be RGB tuples or color names; | |
| optionally you can use three-color mapping by also specifying ``mid``. | |
| Mapping positions for any of the colors can be specified | |
| (e.g. ``blackpoint``), where these parameters are the integer | |
| value corresponding to where the corresponding color should be mapped. | |
| These parameters must have logical order, such that | |
| ``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified). | |
| :param image: The image to colorize. | |
| :param black: The color to use for black input pixels. | |
| :param white: The color to use for white input pixels. | |
| :param mid: The color to use for midtone input pixels. | |
| :param blackpoint: an int value [0, 255] for the black mapping. | |
| :param whitepoint: an int value [0, 255] for the white mapping. | |
| :param midpoint: an int value [0, 255] for the midtone mapping. | |
| :return: An image. | |
| """ | |
| # Initial asserts | |
| assert image.mode == "L" | |
| if mid is None: | |
| assert 0 <= blackpoint <= whitepoint <= 255 | |
| else: | |
| assert 0 <= blackpoint <= midpoint <= whitepoint <= 255 | |
| # Define colors from arguments | |
| black = _color(black, "RGB") | |
| white = _color(white, "RGB") | |
| if mid is not None: | |
| mid = _color(mid, "RGB") | |
| # Empty lists for the mapping | |
| red = [] | |
| green = [] | |
| blue = [] | |
| # Create the low-end values | |
| for i in range(0, blackpoint): | |
| red.append(black[0]) | |
| green.append(black[1]) | |
| blue.append(black[2]) | |
| # Create the mapping (2-color) | |
| if mid is None: | |
| range_map = range(0, whitepoint - blackpoint) | |
| for i in range_map: | |
| red.append(black[0] + i * (white[0] - black[0]) // len(range_map)) | |
| green.append(black[1] + i * (white[1] - black[1]) // len(range_map)) | |
| blue.append(black[2] + i * (white[2] - black[2]) // len(range_map)) | |
| # Create the mapping (3-color) | |
| else: | |
| range_map1 = range(0, midpoint - blackpoint) | |
| range_map2 = range(0, whitepoint - midpoint) | |
| for i in range_map1: | |
| red.append(black[0] + i * (mid[0] - black[0]) // len(range_map1)) | |
| green.append(black[1] + i * (mid[1] - black[1]) // len(range_map1)) | |
| blue.append(black[2] + i * (mid[2] - black[2]) // len(range_map1)) | |
| for i in range_map2: | |
| red.append(mid[0] + i * (white[0] - mid[0]) // len(range_map2)) | |
| green.append(mid[1] + i * (white[1] - mid[1]) // len(range_map2)) | |
| blue.append(mid[2] + i * (white[2] - mid[2]) // len(range_map2)) | |
| # Create the high-end values | |
| for i in range(0, 256 - whitepoint): | |
| red.append(white[0]) | |
| green.append(white[1]) | |
| blue.append(white[2]) | |
| # Return converted image | |
| image = image.convert("RGB") | |
| return _lut(image, red + green + blue) | |
| def contain(image, size, method=Image.Resampling.BICUBIC): | |
| """ | |
| Returns a resized version of the image, set to the maximum width and height | |
| within the requested size, while maintaining the original aspect ratio. | |
| :param image: The image to resize and crop. | |
| :param size: The requested output size in pixels, given as a | |
| (width, height) tuple. | |
| :param method: Resampling method to use. Default is | |
| :py:attr:`~PIL.Image.Resampling.BICUBIC`. | |
| See :ref:`concept-filters`. | |
| :return: An image. | |
| """ | |
| im_ratio = image.width / image.height | |
| dest_ratio = size[0] / size[1] | |
| if im_ratio != dest_ratio: | |
| if im_ratio > dest_ratio: | |
| new_height = round(image.height / image.width * size[0]) | |
| if new_height != size[1]: | |
| size = (size[0], new_height) | |
| else: | |
| new_width = round(image.width / image.height * size[1]) | |
| if new_width != size[0]: | |
| size = (new_width, size[1]) | |
| return image.resize(size, resample=method) | |
| def pad(image, size, method=Image.Resampling.BICUBIC, color=None, centering=(0.5, 0.5)): | |
| """ | |
| Returns a resized and padded version of the image, expanded to fill the | |
| requested aspect ratio and size. | |
| :param image: The image to resize and crop. | |
| :param size: The requested output size in pixels, given as a | |
| (width, height) tuple. | |
| :param method: Resampling method to use. Default is | |
| :py:attr:`~PIL.Image.Resampling.BICUBIC`. | |
| See :ref:`concept-filters`. | |
| :param color: The background color of the padded image. | |
| :param centering: Control the position of the original image within the | |
| padded version. | |
| (0.5, 0.5) will keep the image centered | |
| (0, 0) will keep the image aligned to the top left | |
| (1, 1) will keep the image aligned to the bottom | |
| right | |
| :return: An image. | |
| """ | |
| resized = contain(image, size, method) | |
| if resized.size == size: | |
| out = resized | |
| else: | |
| out = Image.new(image.mode, size, color) | |
| if resized.palette: | |
| out.putpalette(resized.getpalette()) | |
| if resized.width != size[0]: | |
| x = round((size[0] - resized.width) * max(0, min(centering[0], 1))) | |
| out.paste(resized, (x, 0)) | |
| else: | |
| y = round((size[1] - resized.height) * max(0, min(centering[1], 1))) | |
| out.paste(resized, (0, y)) | |
| return out | |
| def crop(image, border=0): | |
| """ | |
| Remove border from image. The same amount of pixels are removed | |
| from all four sides. This function works on all image modes. | |
| .. seealso:: :py:meth:`~PIL.Image.Image.crop` | |
| :param image: The image to crop. | |
| :param border: The number of pixels to remove. | |
| :return: An image. | |
| """ | |
| left, top, right, bottom = _border(border) | |
| return image.crop((left, top, image.size[0] - right, image.size[1] - bottom)) | |
| def scale(image, factor, resample=Image.Resampling.BICUBIC): | |
| """ | |
| Returns a rescaled image by a specific factor given in parameter. | |
| A factor greater than 1 expands the image, between 0 and 1 contracts the | |
| image. | |
| :param image: The image to rescale. | |
| :param factor: The expansion factor, as a float. | |
| :param resample: Resampling method to use. Default is | |
| :py:attr:`~PIL.Image.Resampling.BICUBIC`. | |
| See :ref:`concept-filters`. | |
| :returns: An :py:class:`~PIL.Image.Image` object. | |
| """ | |
| if factor == 1: | |
| return image.copy() | |
| elif factor <= 0: | |
| msg = "the factor must be greater than 0" | |
| raise ValueError(msg) | |
| else: | |
| size = (round(factor * image.width), round(factor * image.height)) | |
| return image.resize(size, resample) | |
| def deform(image, deformer, resample=Image.Resampling.BILINEAR): | |
| """ | |
| Deform the image. | |
| :param image: The image to deform. | |
| :param deformer: A deformer object. Any object that implements a | |
| ``getmesh`` method can be used. | |
| :param resample: An optional resampling filter. Same values possible as | |
| in the PIL.Image.transform function. | |
| :return: An image. | |
| """ | |
| return image.transform( | |
| image.size, Image.Transform.MESH, deformer.getmesh(image), resample | |
| ) | |
| def equalize(image, mask=None): | |
| """ | |
| Equalize the image histogram. This function applies a non-linear | |
| mapping to the input image, in order to create a uniform | |
| distribution of grayscale values in the output image. | |
| :param image: The image to equalize. | |
| :param mask: An optional mask. If given, only the pixels selected by | |
| the mask are included in the analysis. | |
| :return: An image. | |
| """ | |
| if image.mode == "P": | |
| image = image.convert("RGB") | |
| h = image.histogram(mask) | |
| lut = [] | |
| for b in range(0, len(h), 256): | |
| histo = [_f for _f in h[b : b + 256] if _f] | |
| if len(histo) <= 1: | |
| lut.extend(list(range(256))) | |
| else: | |
| step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 | |
| if not step: | |
| lut.extend(list(range(256))) | |
| else: | |
| n = step // 2 | |
| for i in range(256): | |
| lut.append(n // step) | |
| n = n + h[i + b] | |
| return _lut(image, lut) | |
| def expand(image, border=0, fill=0): | |
| """ | |
| Add border to the image | |
| :param image: The image to expand. | |
| :param border: Border width, in pixels. | |
| :param fill: Pixel fill value (a color value). Default is 0 (black). | |
| :return: An image. | |
| """ | |
| left, top, right, bottom = _border(border) | |
| width = left + image.size[0] + right | |
| height = top + image.size[1] + bottom | |
| color = _color(fill, image.mode) | |
| if image.palette: | |
| palette = ImagePalette.ImagePalette(palette=image.getpalette()) | |
| if isinstance(color, tuple): | |
| color = palette.getcolor(color) | |
| else: | |
| palette = None | |
| out = Image.new(image.mode, (width, height), color) | |
| if palette: | |
| out.putpalette(palette.palette) | |
| out.paste(image, (left, top)) | |
| return out | |
| def fit(image, size, method=Image.Resampling.BICUBIC, bleed=0.0, centering=(0.5, 0.5)): | |
| """ | |
| Returns a resized and cropped version of the image, cropped to the | |
| requested aspect ratio and size. | |
| This function was contributed by Kevin Cazabon. | |
| :param image: The image to resize and crop. | |
| :param size: The requested output size in pixels, given as a | |
| (width, height) tuple. | |
| :param method: Resampling method to use. Default is | |
| :py:attr:`~PIL.Image.Resampling.BICUBIC`. | |
| See :ref:`concept-filters`. | |
| :param bleed: Remove a border around the outside of the image from all | |
| four edges. The value is a decimal percentage (use 0.01 for | |
| one percent). The default value is 0 (no border). | |
| Cannot be greater than or equal to 0.5. | |
| :param centering: Control the cropping position. Use (0.5, 0.5) for | |
| center cropping (e.g. if cropping the width, take 50% off | |
| of the left side, and therefore 50% off the right side). | |
| (0.0, 0.0) will crop from the top left corner (i.e. if | |
| cropping the width, take all of the crop off of the right | |
| side, and if cropping the height, take all of it off the | |
| bottom). (1.0, 0.0) will crop from the bottom left | |
| corner, etc. (i.e. if cropping the width, take all of the | |
| crop off the left side, and if cropping the height take | |
| none from the top, and therefore all off the bottom). | |
| :return: An image. | |
| """ | |
| # by Kevin Cazabon, Feb 17/2000 | |
| # [email protected] | |
| # https://www.cazabon.com | |
| # ensure centering is mutable | |
| centering = list(centering) | |
| if not 0.0 <= centering[0] <= 1.0: | |
| centering[0] = 0.5 | |
| if not 0.0 <= centering[1] <= 1.0: | |
| centering[1] = 0.5 | |
| if not 0.0 <= bleed < 0.5: | |
| bleed = 0.0 | |
| # calculate the area to use for resizing and cropping, subtracting | |
| # the 'bleed' around the edges | |
| # number of pixels to trim off on Top and Bottom, Left and Right | |
| bleed_pixels = (bleed * image.size[0], bleed * image.size[1]) | |
| live_size = ( | |
| image.size[0] - bleed_pixels[0] * 2, | |
| image.size[1] - bleed_pixels[1] * 2, | |
| ) | |
| # calculate the aspect ratio of the live_size | |
| live_size_ratio = live_size[0] / live_size[1] | |
| # calculate the aspect ratio of the output image | |
| output_ratio = size[0] / size[1] | |
| # figure out if the sides or top/bottom will be cropped off | |
| if live_size_ratio == output_ratio: | |
| # live_size is already the needed ratio | |
| crop_width = live_size[0] | |
| crop_height = live_size[1] | |
| elif live_size_ratio >= output_ratio: | |
| # live_size is wider than what's needed, crop the sides | |
| crop_width = output_ratio * live_size[1] | |
| crop_height = live_size[1] | |
| else: | |
| # live_size is taller than what's needed, crop the top and bottom | |
| crop_width = live_size[0] | |
| crop_height = live_size[0] / output_ratio | |
| # make the crop | |
| crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering[0] | |
| crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering[1] | |
| crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) | |
| # resize the image and return it | |
| return image.resize(size, method, box=crop) | |
| def flip(image): | |
| """ | |
| Flip the image vertically (top to bottom). | |
| :param image: The image to flip. | |
| :return: An image. | |
| """ | |
| return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM) | |
| def grayscale(image): | |
| """ | |
| Convert the image to grayscale. | |
| :param image: The image to convert. | |
| :return: An image. | |
| """ | |
| return image.convert("L") | |
| def invert(image): | |
| """ | |
| Invert (negate) the image. | |
| :param image: The image to invert. | |
| :return: An image. | |
| """ | |
| lut = [] | |
| for i in range(256): | |
| lut.append(255 - i) | |
| return image.point(lut) if image.mode == "1" else _lut(image, lut) | |
| def mirror(image): | |
| """ | |
| Flip image horizontally (left to right). | |
| :param image: The image to mirror. | |
| :return: An image. | |
| """ | |
| return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT) | |
| def posterize(image, bits): | |
| """ | |
| Reduce the number of bits for each color channel. | |
| :param image: The image to posterize. | |
| :param bits: The number of bits to keep for each channel (1-8). | |
| :return: An image. | |
| """ | |
| lut = [] | |
| mask = ~(2 ** (8 - bits) - 1) | |
| for i in range(256): | |
| lut.append(i & mask) | |
| return _lut(image, lut) | |
| def solarize(image, threshold=128): | |
| """ | |
| Invert all pixel values above a threshold. | |
| :param image: The image to solarize. | |
| :param threshold: All pixels above this greyscale level are inverted. | |
| :return: An image. | |
| """ | |
| lut = [] | |
| for i in range(256): | |
| if i < threshold: | |
| lut.append(i) | |
| else: | |
| lut.append(255 - i) | |
| return _lut(image, lut) | |
| def exif_transpose(image, *, in_place=False): | |
| """ | |
| If an image has an EXIF Orientation tag, other than 1, transpose the image | |
| accordingly, and remove the orientation data. | |
| :param image: The image to transpose. | |
| :param in_place: Boolean. Keyword-only argument. | |
| If ``True``, the original image is modified in-place, and ``None`` is returned. | |
| If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned | |
| with the transposition applied. If there is no transposition, a copy of the | |
| image will be returned. | |
| """ | |
| image_exif = image.getexif() | |
| orientation = image_exif.get(ExifTags.Base.Orientation) | |
| method = { | |
| 2: Image.Transpose.FLIP_LEFT_RIGHT, | |
| 3: Image.Transpose.ROTATE_180, | |
| 4: Image.Transpose.FLIP_TOP_BOTTOM, | |
| 5: Image.Transpose.TRANSPOSE, | |
| 6: Image.Transpose.ROTATE_270, | |
| 7: Image.Transpose.TRANSVERSE, | |
| 8: Image.Transpose.ROTATE_90, | |
| }.get(orientation) | |
| if method is not None: | |
| transposed_image = image.transpose(method) | |
| if in_place: | |
| image.im = transposed_image.im | |
| image.pyaccess = None | |
| image._size = transposed_image._size | |
| exif_image = image if in_place else transposed_image | |
| exif = exif_image.getexif() | |
| if ExifTags.Base.Orientation in exif: | |
| del exif[ExifTags.Base.Orientation] | |
| if "exif" in exif_image.info: | |
| exif_image.info["exif"] = exif.tobytes() | |
| elif "Raw profile type exif" in exif_image.info: | |
| exif_image.info["Raw profile type exif"] = exif.tobytes().hex() | |
| elif "XML:com.adobe.xmp" in exif_image.info: | |
| for pattern in ( | |
| r'tiff:Orientation="([0-9])"', | |
| r"<tiff:Orientation>([0-9])</tiff:Orientation>", | |
| ): | |
| exif_image.info["XML:com.adobe.xmp"] = re.sub( | |
| pattern, "", exif_image.info["XML:com.adobe.xmp"] | |
| ) | |
| if not in_place: | |
| return transposed_image | |
| elif not in_place: | |
| return image.copy() | |