Spaces:
Runtime error
Runtime error
Commit
·
bc3d254
1
Parent(s):
22b8c91
update
Browse files- app.py +6 -5
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from loadimg import load_img
|
| 3 |
-
import spaces
|
| 4 |
from transformers import AutoModelForImageSegmentation
|
| 5 |
import torch
|
| 6 |
from torchvision import transforms
|
|
@@ -11,10 +11,11 @@ import numpy as np
|
|
| 11 |
import os
|
| 12 |
import tempfile
|
| 13 |
import uuid
|
|
|
|
| 14 |
|
| 15 |
torch.set_float32_matmul_precision("medium")
|
| 16 |
|
| 17 |
-
device =
|
| 18 |
|
| 19 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 20 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
|
@@ -29,7 +30,7 @@ transform_image = transforms.Compose(
|
|
| 29 |
)
|
| 30 |
|
| 31 |
|
| 32 |
-
|
| 33 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
| 34 |
try:
|
| 35 |
# Load the video using moviepy
|
|
@@ -111,7 +112,7 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
|
|
| 111 |
|
| 112 |
def process(image, bg):
|
| 113 |
image_size = image.size
|
| 114 |
-
input_images = transform_image(image).unsqueeze(0).to(
|
| 115 |
# Prediction
|
| 116 |
with torch.no_grad():
|
| 117 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
@@ -191,4 +192,4 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 191 |
)
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
-
demo.launch(show_error=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from loadimg import load_img
|
| 3 |
+
#import spaces
|
| 4 |
from transformers import AutoModelForImageSegmentation
|
| 5 |
import torch
|
| 6 |
from torchvision import transforms
|
|
|
|
| 11 |
import os
|
| 12 |
import tempfile
|
| 13 |
import uuid
|
| 14 |
+
import devicetorch
|
| 15 |
|
| 16 |
torch.set_float32_matmul_precision("medium")
|
| 17 |
|
| 18 |
+
device = devicetorch.get(torch)
|
| 19 |
|
| 20 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 21 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
|
| 33 |
+
#@spaces.GPU
|
| 34 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
| 35 |
try:
|
| 36 |
# Load the video using moviepy
|
|
|
|
| 112 |
|
| 113 |
def process(image, bg):
|
| 114 |
image_size = image.size
|
| 115 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
| 116 |
# Prediction
|
| 117 |
with torch.no_grad():
|
| 118 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
|
| 192 |
)
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|
| 195 |
+
demo.launch(show_error=True)
|
requirements.txt
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
torch
|
| 2 |
accelerate
|
| 3 |
opencv-python
|
| 4 |
-
spaces
|
| 5 |
pillow
|
| 6 |
numpy
|
| 7 |
timm
|
|
@@ -15,4 +14,5 @@ gradio
|
|
| 15 |
gradio_imageslider
|
| 16 |
loadimg>=0.1.1
|
| 17 |
moviepy
|
| 18 |
-
pydub
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
accelerate
|
| 3 |
opencv-python
|
|
|
|
| 4 |
pillow
|
| 5 |
numpy
|
| 6 |
timm
|
|
|
|
| 14 |
gradio_imageslider
|
| 15 |
loadimg>=0.1.1
|
| 16 |
moviepy
|
| 17 |
+
pydub
|
| 18 |
+
devicetorch
|