File size: 47,000 Bytes
e702d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6641948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e702d93
ccacf0f
 
e702d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d614182
 
e702d93
 
d614182
e702d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d614182
e702d93
 
 
 
d614182
 
e702d93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6641948
 
e702d93
ccacf0f
e702d93
6641948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccacf0f
 
 
 
 
 
 
 
 
 
d614182
ccacf0f
 
 
 
 
 
 
 
 
 
 
d614182
ccacf0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d614182
ccacf0f
 
 
 
 
 
 
 
 
 
 
 
 
d614182
 
ccacf0f
 
 
 
 
 
 
 
 
 
 
 
 
d614182
 
ccacf0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d614182
 
ccacf0f
d614182
ccacf0f
d614182
 
 
 
 
ccacf0f
 
 
d614182
 
 
ccacf0f
d614182
ccacf0f
 
 
d614182
 
 
 
 
ccacf0f
d614182
 
 
ccacf0f
 
 
 
 
 
 
 
d614182
ccacf0f
d614182
ccacf0f
 
d614182
 
 
 
 
ccacf0f
d614182
ccacf0f
 
d614182
 
 
 
 
 
 
 
ccacf0f
 
d614182
 
 
 
ccacf0f
d614182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccacf0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d614182
 
 
 
ccacf0f
e702d93
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
import os
import gradio as gr
import openai
import PyPDF2
import numpy as np
import math

MODEL_STATUS = {
    'tiktoken': False,
    'transformers': False,
    'torch': False,
    'model_loaded': False,
    'error_messages': []
}

try:
    import tiktoken
    gpt_tokenizer = tiktoken.get_encoding("gpt2")
    MODEL_STATUS['tiktoken'] = True
except Exception as e:
    MODEL_STATUS['error_messages'].append(f"tiktoken error: {str(e)}")
    gpt_tokenizer = None

# WEEK 3 
# try:
#     from transformers import AutoTokenizer, AutoModel
#     import torch
#     MODEL_STATUS['transformers'] = True
#     MODEL_STATUS['torch'] = True
#     
#     print("Loading model...")
#     tokenizer = AutoTokenizer.from_pretrained("prajjwal1/bert-tiny")
#     model = AutoModel.from_pretrained("prajjwal1/bert-tiny")
#     MODEL_STATUS['model_loaded'] = True
#     print("model loaded successfully!")
#     
# except Exception as e:
#     MODEL_STATUS['error_messages'].append(f"Model loading error: {str(e)}")
#     tokenizer = None
#     model = None

tokenizer = None
model = None

# OpenAI setup
OPENAI_API_KEY = os.getenv("openAI_TOKEN")
if OPENAI_API_KEY:
    openai.api_key = OPENAI_API_KEY
else:
    MODEL_STATUS['error_messages'].append("OpenAI API key not found")

import shutil
import os

cache_dir = os.path.expanduser("~/.cache/huggingface")
if os.path.exists(cache_dir):
    try:
        total_size = sum(
            os.path.getsize(os.path.join(dirpath, filename))
            for dirpath, dirnames, filenames in os.walk(cache_dir)
            for filename in filenames
        ) / (1024**3)  
        
        if total_size > 40: 
            shutil.rmtree(cache_dir)
            print(f"Cleared {total_size:.2f}GB cache")
    except Exception as e:
        print(f"Cache cleanup error: {e}")

from model_functions import *

def tokenize_text(text):
    if not text.strip():
        return [], 0, "Enter some text to see tokenization"
    
    if gpt_tokenizer:
        try:
            tokens = gpt_tokenizer.encode(text)
            token_strings = []
            for token in tokens:
                try:
                    decoded = gpt_tokenizer.decode([token])
                    token_strings.append(decoded)
                except UnicodeDecodeError:
                    token_strings.append(f"<token_{token}>")
            return token_strings, len(tokens), f"Text tokenized successfully → {len(tokens)} tokens"
        except Exception as e:
            return [], 0, f"Tokenization error: {str(e)}"
    else:
        # Fallback: simple whitespace tokenization
        tokens = text.split()
        return tokens, len(tokens), f"Using fallback tokenization → {len(tokens)} tokens (tiktoken unavailable)"

def get_next_token_predictions(text):
    """Get next token predictions using OpenAI API"""
    if not text.strip():
        return "Enter some text to see predictions"
    
    if not OPENAI_API_KEY:
        return "OpenAI API key not available - cannot generate predictions"
    
    try:
        client = openai.OpenAI(api_key=OPENAI_API_KEY)
        response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "Complete the following text with the next most likely word. Provide exactly 3 options with their approximate probabilities."},
                {"role": "user", "content": f"Text: '{text}'\n\nNext word options:"}
            ],
            temperature=0.1,
            max_tokens=50
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error getting predictions: {str(e)}"

def merge_subword_tokens(tokens, attention_matrix):
    """Merge subword tokens back into words for cleaner viz"""
    merged_tokens = []
    merged_attention = []
    current_word = ""
    current_indices = []
    
    for i, token in enumerate(tokens):
        if token.startswith('##'):
            current_word += token[2:]
            current_indices.append(i)
        else:
            if current_word:
                merged_tokens.append(current_word)
                merged_attention.append(current_indices)
            current_word = token
            current_indices = [i]
    
    if current_word:
        merged_tokens.append(current_word)
        merged_attention.append(current_indices)
    
    # Merge attention weights by averaging
    merged_matrix = np.zeros((len(merged_tokens), len(merged_tokens)))
    for i, i_indices in enumerate(merged_attention):
        for j, j_indices in enumerate(merged_attention):
            # Average attention between word groups
            weights = []
            for ii in i_indices:
                for jj in j_indices:
                    if ii < attention_matrix.shape[0] and jj < attention_matrix.shape[1]:
                        weights.append(attention_matrix[ii, jj])
            if weights:
                merged_matrix[i, j] = np.mean(weights)
    
    return merged_tokens, merged_matrix

def create_attention_network_svg(text):
    if not text.strip():
        return "Enter text to see attention network"
    
    if not MODEL_STATUS['model_loaded']:
        return f"Attention model not available. Errors: {MODEL_STATUS['error_messages']}"

    try:
        # Tokenize input
        inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=64)
        tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])

        with torch.no_grad():
            outputs = model(**inputs, output_attentions=True)

        # Remove special tokens
        clean_tokens = []
        clean_indices = []
        for i, token in enumerate(tokens):
            if token not in ['[CLS]', '[SEP]', '[PAD]']:
                clean_tokens.append(token)
                clean_indices.append(i)

        if len(clean_indices) < 2:
            return "Need at least 2 valid tokens for attention visualisation."

        # SEARCH for best head: max variance
        best_attention = None
        best_name = ""
        best_tokens = []
        best_variance = -1

        debug_info = f"Total Layers: {len(outputs.attentions)}\n"

        for layer_idx, layer_att in enumerate(outputs.attentions):
            num_heads = layer_att.shape[1]
            for head_idx in range(num_heads):
                attn_matrix = layer_att[0, head_idx].numpy()
                trimmed_attention = attn_matrix[np.ix_(clean_indices, clean_indices)]
                variance = np.var(trimmed_attention)

                debug_info += f"Layer {layer_idx}, Head {head_idx} — Variance: {variance:.5f}\n"

                if variance > best_variance:
                    best_attention = trimmed_attention
                    best_name = f"Layer {layer_idx}, Head {head_idx}"
                    best_tokens = clean_tokens
                    best_variance = variance

        if best_attention is None:
            return "Could not extract valid attention."

        # Merge subwords
        merged_tokens, merged_attention = merge_subword_tokens(best_tokens, best_attention)
        n_tokens = len(merged_tokens)

        if n_tokens < 2:
            return "Too few tokens after merging for attention graph."

        # SVG dimensions
        width, height = 1000, 500
        margin = 50

        # Linear positions
        positions = []
        for i in range(n_tokens):
            x = margin + (width - 2*margin) * i / (n_tokens - 1)
            y = height // 2
            positions.append((x, y))

        # Start SVG
        svg = f'<svg width="{width}" height="{height}" xmlns="http://www.w3.org/2000/svg">'
        svg += '<style>.token-text { font-family: Arial; font-size: 14px; text-anchor: middle; font-weight: bold; }'
        svg += '.debug-text { font-family: monospace; font-size: 10px; fill: #666; }</style>'

        # Choose top-N attention connections
        num_top_connections = 20
        pairs = []
        for i in range(n_tokens):
            for j in range(n_tokens):
                if i != j:
                    pairs.append((merged_attention[i, j], i, j))
        pairs.sort(reverse=True)
        top_pairs = pairs[:num_top_connections]

        # Draw attention arcs
        for weight, i, j in top_pairs:
            x1, y1 = positions[i]
            x2, y2 = positions[j]
            mid_x = (x1 + x2) / 2
            curve_y = y1 - 80 if (i + j) % 2 == 0 else y1 + 80

            # Color coding
            if weight > 0.08:
                color = "#d32f2f"  # red
                opacity = "0.8"
            elif weight > 0.04:
                color = "#ff9800"  # orange
                opacity = "0.6"
            else:
                color = "#2196f3"  # blue
                opacity = "0.4"

            thickness = max(2, weight * 10)

            svg += f'<path d="M {x1},{y1} Q {mid_x},{curve_y} {x2},{y2}" '
            svg += f'stroke="{color}" stroke-width="{thickness}" fill="none" opacity="{opacity}"/>'

        # Draw nodes
        for i, (token, (x, y)) in enumerate(zip(merged_tokens, positions)):
            svg += f'<circle cx="{x}" cy="{y}" r="25" fill="white" stroke="black" stroke-width="2"/>'
            svg += f'<text x="{x}" y="{y+5}" class="token-text">{token[:10]}</text>'

        # Legend and info
        svg += f'<text x="20" y="{height - 130}" style="font-family: Arial; font-size: 16px; font-weight: bold;">'
        svg += f'Attention Network - {best_name}</text>'
        svg += f'<text x="20" y="{height - 110}" style="font-family: Arial; font-size: 12px;">'
        svg += f'Red: Strong | Orange: Medium | Blue: Weak | Showing top {num_top_connections} connections</text>'

        # Debug info (limited lines)
        for i, line in enumerate(debug_info.split('\n')[:8]):
            svg += f'<text x="20" y="{height - 90 + 12*i}" class="debug-text">{line}</text>'

        svg += '</svg>'

        return svg

    except Exception as e:
        return f"Error generating attention network: {str(e)}"


with gr.Blocks() as demo:
    gr.Markdown("# Language Models & Methods Lab Interface")
    
   
    with gr.Tabs() as tabs:
        
        # Week 3 Tab
        with gr.Tab("Week 3: Text Processing"):
            gr.Markdown("# How Language Models Process Text")
            gr.Markdown("Explore tokenization, context windows, and attention mechanisms")
            
            with gr.Tabs() as week3_tabs:
                with gr.Tab("Tokenization Explorer"):
                    gr.Markdown("### See how text gets broken into tokens")
                    
                    with gr.Row():
                        token_input = gr.Textbox(
                            label="Enter your text",
                            placeholder="Type any text to see how it gets tokenized...",
                            lines=3,
                            value="The quick brown fox jumps over the lazy dog."
                        )
                    
                    with gr.Row():
                        tokenize_btn = gr.Button("Tokenize Text")
                    
                    with gr.Row():
                        token_display = gr.Textbox(label="Tokens", lines=3, interactive=False)
                        token_count = gr.Number(label="Token Count", interactive=False)
                    
                    with gr.Row():
                        token_info = gr.Textbox(label="Tokenization Info", lines=2, interactive=False)
                
                with gr.Tab("Context & Predictions"):
                    gr.Markdown("### Next-word predictions and context understanding")
                    
                    with gr.Row():
                        context_input = gr.Textbox(
                            label="Enter incomplete text",
                            placeholder="I went to the bank to",
                            lines=2,
                            value="I went to the bank to"
                        )
                    
                    with gr.Row():
                        predict_btn = gr.Button("Get Next Word Predictions")
                    
                    with gr.Row():
                        predictions_output = gr.Textbox(label="Most Likely Next Words", lines=5, interactive=False)
                    
                    with gr.Row():
                        context_window_info = gr.Textbox(
                            label="Context Window Status",
                            value="Click 'Get Predictions' to see token usage",
                            interactive=False
                        )
                
                with gr.Tab("Attention Network"):
                    gr.Markdown("### Network visualisation of attention patterns")
                    gr.Markdown("See how words connect to each other through attention mechanisms")
                    
                    with gr.Row():
                        attention_input = gr.Textbox(
                            label="Enter a sentence (shorter sentences work better)",
                            placeholder="The bank was closed.",
                            lines=2,
                            value="The bank was closed."
                        )
                    
                    with gr.Row():
                        analyze_attention_btn = gr.Button("Generate Attention Network")
                    
                    with gr.Row():
                        attention_network = gr.HTML(label="Attention Network Visualisation")
            
            # Week 3 Event Handlers
            def update_tokenization(text):
                tokens, count, info = tokenize_text(text)
                token_str = " | ".join(tokens) if tokens else ""
                return token_str, count, info
            
            def update_predictions_with_context(text):
                if not text.strip():
                    return "Enter text to get predictions", "No text to analyze"
                
                # Get token count for context window
                _, token_count, _ = tokenize_text(text)
                context_status = f"Current text: {token_count} tokens / 4096 (GPT-3.5 limit) = {token_count/4096*100:.1f}% used"
                
                # Get predictions
                predictions = get_next_token_predictions(text)
                
                return predictions, context_status
            
            def generate_network_visualization(text):
                return create_attention_network_svg(text)
            
            # Connect event handlers
            tokenize_btn.click(
                update_tokenization,
                inputs=[token_input],
                outputs=[token_display, token_count, token_info]
            )
            
            # Auto-update tokenization as user types
            token_input.change(
                update_tokenization,
                inputs=[token_input],
                outputs=[token_display, token_count, token_info]
            )
            
            predict_btn.click(
                update_predictions_with_context,
                inputs=[context_input],
                outputs=[predictions_output, context_window_info]
            )
            
            analyze_attention_btn.click(
                generate_network_visualization,
                inputs=[attention_input],
                outputs=[attention_network]
            )
        
        # OTHER WEEKS

        with gr.Tab("Week 4: Controlling Model Behaviour"):
            gr.Markdown("# Controlling Model Behaviour Through Prompting")
            gr.Markdown("Explore how different prompting techniques and parameters affect model outputs")
            
            with gr.Tabs() as week4_tabs:
                
                with gr.Tab("Temperature Effects"):
                    gr.Markdown("### Compare how temperature affects creativity and consistency")
                    
                    with gr.Row():
                        temp_input = gr.Textbox(
                            label="Enter your prompt",
                            placeholder="Type your question or prompt here...",
                            lines=3,
                            value="Write a creative opening sentence for a story about a robot looking for a friend."
                        )
                    
                    with gr.Row():
                        temp_slider1 = gr.Slider(
                            minimum=0.1, 
                            maximum=0.4, 
                            value=0.2, 
                            step=0.1, 
                            label="Low Temperature (More Focused & Consistent)"
                        )
                        temp_slider2 = gr.Slider(
                            minimum=0.7, 
                            maximum=1.0, 
                            value=0.9, 
                            step=0.1, 
                            label="High Temperature (More Creative & Varied)"
                        )

                    with gr.Row():
                        generate_temp = gr.Button("Generate Both Responses")
                    
                    with gr.Row():
                        focused_output = gr.Textbox(
                            label="Focused Output (Low Temperature)", 
                            lines=5
                        )
                        creative_output = gr.Textbox(
                            label="Creative Output (High Temperature)", 
                            lines=5
                        )
                
                with gr.Tab("System Prompts"):
                    gr.Markdown("### See how system prompts shape model behaviour")
                    
                    with gr.Row():
                        system_input = gr.Textbox(
                            label="Enter your prompt",
                            placeholder="Type your question or prompt here...",
                            lines=3,
                            value="Explain what a database index is."
                        )
                    
                    with gr.Row():
                        system_prompt_dropdown = gr.Dropdown(
                            choices=[
                                "You are a helpful assistant providing accurate, concise answers.",
                                "You are a data scientist explaining technical concepts with precision and examples.",
                                "You are a creative storyteller who uses vivid metaphors and analogies.",
                                "You are a critical reviewer who evaluates information carefully and points out limitations.",
                                "You are a friendly teacher explaining concepts to someone learning for the first time."
                            ],
                            label="Choose System Prompt",
                            value="You are a helpful assistant providing accurate, concise answers."
                        )
                    
                    with gr.Row():
                        generate_system = gr.Button("Generate Response")
                    
                    with gr.Row():
                        system_output = gr.Textbox(label="Output", lines=6)
                
                with gr.Tab("Prompting Techniques"):
                    gr.Markdown("""
                    ### Compare Zero-Shot, Few-Shot, and Chain-of-Thought
                    - **Zero-shot:** Direct question without examples
                    - **Few-shot:** You should provide similar examples to guide the response
                    - **Chain-of-thought:** Asks model to break down reasoning step-by-step
                    """)
                    
                    with gr.Row():
                        shot_input = gr.Textbox(
                            label="Enter your task",
                            placeholder="Enter a task that requires reasoning...",
                            lines=3,
                            value="Classify the sentiment: 'The product works okay but customer service was terrible.'"
                        )
                    
                    with gr.Row():
                        approach_type = gr.Radio(
                            ["zero-shot", "few-shot", "chain-of-thought"],
                            label="Select Prompting Technique",
                            value="zero-shot"
                        )
                    
                    with gr.Row():
                        generate_shot = gr.Button("Generate Response")
                    
                    with gr.Row():
                        shot_output = gr.Textbox(label="Output", lines=8)
                
                with gr.Tab("Combining Techniques"):
                    gr.Markdown("### Experiment with combining multiple techniques")
                    
                    with gr.Row():
                        combo_input = gr.Textbox(
                            label="Enter your task",
                            placeholder="Enter a complex task...",
                            lines=3,
                            value="Analyse this review and suggest improvements: 'App crashes sometimes but has good features.'"
                        )
                    
                    with gr.Row():
                        combo_system = gr.Dropdown(
                            choices=[
                                "None (default)",
                                "You are a product analyst providing structured feedback.",
                                "You are a UX researcher focused on user experience.",
                            ],
                            label="System Prompt (optional)",
                            value="None (default)"
                        )
                    
                    with gr.Row():
                        combo_examples = gr.Checkbox(
                            label="Include few-shot examples",
                            value=False
                        )
                        combo_cot = gr.Checkbox(
                            label="Use chain-of-thought reasoning",
                            value=False
                        )
                    
                    with gr.Row():
                        combo_temp = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.5,
                            step=0.1,
                            label="Temperature"
                        )
                    
                    with gr.Row():
                        generate_combo = gr.Button("Generate Response")
                    
                    with gr.Row():
                        combo_output = gr.Textbox(label="Output", lines=8)
                        combo_info = gr.Textbox(label="Techniques Applied", lines=4)

            generate_temp.click(
                lambda x, t1, t2: [
                    generate_with_temperature(x, t1), 
                    generate_with_temperature(x, t2)
                ],
                inputs=[temp_input, temp_slider1, temp_slider2],
                outputs=[focused_output, creative_output]
            )

            generate_system.click(
                generate_with_system_prompt,
                inputs=[system_input, system_prompt_dropdown],
                outputs=system_output
            )

            generate_shot.click(
                generate_with_examples,
                inputs=[shot_input, approach_type],
                outputs=shot_output
            )

            generate_combo.click(
                generate_combined_techniques,
                inputs=[combo_input, combo_system, combo_examples, combo_cot, combo_temp],
                outputs=[combo_output, combo_info]
            )
        
        with gr.Tab("Week 5: Advanced Prompting"):
            gr.Markdown("# Advanced Prompt Engineering Techniques")
            gr.Markdown("Explore sophisticated prompting strategies and visualise reasoning patterns")
            
            with gr.Tabs() as week5_tabs:
                
                with gr.Tab("Tree of Thought Explorer"):
                    gr.Markdown("""
                    ### Visualise Multi-Path Reasoning
                    The model will break down your problem into multiple approaches, evaluate each one, and select the best path.
                    """)
                    
                    with gr.Row():
                        tot_input = gr.Textbox(
                            label="Enter a problem to solve",
                            placeholder="e.g., How can we improve user engagement on a mobile app?",
                            lines=3,
                            value="How should a startup decide between building a mobile app or a web application first?"
                        )
                    
                    with gr.Row():
                        generate_tot = gr.Button("Generate Tree of Thought", variant="primary")
                    
                    with gr.Row():
                        tot_output = gr.Textbox(
                            label="Reasoning Process",
                            lines=12
                        )
                    
                    with gr.Row():
                        tot_visualization = gr.HTML(
                            label="Tree Visualisation"
                        )
                
                with gr.Tab("Self-Consistency Testing"):
                    gr.Markdown("""
                    ### Test Response Consistency
                    Run the same prompt multiple times to identify consistent patterns and areas of uncertainty.
                    """)
                    
                    with gr.Row():
                        consistency_input = gr.Textbox(
                            label="Enter your prompt",
                            placeholder="Ask a question that requires reasoning...",
                            lines=3,
                            value="What are the three most important factors in choosing a database system?"
                        )
                    
                    with gr.Row():
                        num_runs = gr.Slider(
                            minimum=3,
                            maximum=5,
                            value=3,
                            step=1,
                            label="Number of generations"
                        )
                        consistency_temp = gr.Slider(
                            minimum=0.3,
                            maximum=0.9,
                            value=0.7,
                            step=0.1,
                            label="Temperature"
                        )
                    
                    with gr.Row():
                        generate_consistency = gr.Button("Generate Multiple Responses", variant="primary")
                    
                    with gr.Row():
                        consistency_analysis = gr.Textbox(
                            label="Analysis Guide",
                            lines=4
                        )
                    
                    with gr.Row():
                        consistency_output1 = gr.Textbox(label="Response 1", lines=5)
                        consistency_output2 = gr.Textbox(label="Response 2", lines=5)
                    
                    with gr.Row():
                        consistency_output3 = gr.Textbox(label="Response 3", lines=5)
                        consistency_output4 = gr.Textbox(label="Response 4 (if selected)", lines=5, visible=True)
                    
                    with gr.Row():
                        consistency_output5 = gr.Textbox(label="Response 5 (if selected)", lines=5, visible=True)
                
                with gr.Tab("Prompt Structure Comparison"):
                    gr.Markdown("""
                    ### Compare Structural Strategies
                    Test how different prompt structures affect model attention and output quality.
                    """)
                    
                    with gr.Row():
                        structure_input = gr.Textbox(
                            label="Enter your task",
                            placeholder="Enter a task or question...",
                            lines=3,
                            value=""
                        )
                    
                    with gr.Row():
                        gr.Markdown("### Select ONE structure to test:")
                    
                    with gr.Row():
                        structure_radio = gr.Radio(
                            choices=[
                                "Baseline (no special structure)",
                                "Front-loading (critical instruction first)",
                                "Delimiter strategy (section separation)",
                                "Sandwich technique (instruction at start and end)"
                            ],
                            label="Prompt Structure",
                            value="Baseline (no special structure)"
                        )
                    
                    with gr.Row():
                        generate_structure = gr.Button("Generate Response", variant="primary")
                    
                    with gr.Row():
                        structure_output = gr.Textbox(
                            label="Response",
                            lines=8
                        )
                        structure_info = gr.Textbox(
                            label="Structure Information",
                            lines=8
                        )
            
            # Week 5 Event Handlers
            def handle_tot(task):
                text_output, svg_output = generate_tot_response(task)
                return text_output, svg_output
            
            def handle_consistency(prompt, runs, temp):
                responses, analysis = generate_self_consistency(prompt, int(runs), temp)
                while len(responses) < 5:
                    responses.append("")
                return analysis, responses[0], responses[1], responses[2], responses[3], responses[4]
            
            def handle_structure(task, structure_choice):
                use_frontload = "Front-loading" in structure_choice
                use_delimiters = "Delimiter" in structure_choice
                use_sandwich = "Sandwich" in structure_choice
                
                output, info = compare_prompt_structures(task, use_frontload, use_delimiters, use_sandwich)
                return output, info
            
            generate_tot.click(
                handle_tot,
                inputs=[tot_input],
                outputs=[tot_output, tot_visualization]
            )
            
            generate_consistency.click(
                handle_consistency,
                inputs=[consistency_input, num_runs, consistency_temp],
                outputs=[consistency_analysis, consistency_output1, consistency_output2, 
                        consistency_output3, consistency_output4, consistency_output5]
            )
            
            generate_structure.click(
                handle_structure,
                inputs=[structure_input, structure_radio],
                outputs=[structure_output, structure_info]
            )


        
        
        
        with gr.Tab("Assignment 1"):
            gr.Markdown("# Assignment 1: Prompting Strategy Evaluation")
            gr.Markdown("""
            Test different prompting strategies for your chosen NLP task.
            Remember: You need 3 documents, with 2 different strategies tested per document (6 total experiments).
            """)
            
            with gr.Row():
                assignment_task = gr.Dropdown(
                    choices=["Sentiment Analysis", "Summarisation"],
                    label="Select NLP Task",
                    value="Sentiment Analysis"
                )
            
            with gr.Row():
                with gr.Column():
                    assignment_text = gr.Textbox(
                        label="Enter Text",
                        placeholder="Paste your document text here...",
                        lines=6
                    )
                with gr.Column():
                    assignment_file = gr.File(
                        label="OR Upload a File (TXT or PDF)",
                        file_types=[".txt", ".pdf"],
                        type="binary"
                    )
            
            gr.Markdown("### Select Your Prompting Strategy")
            
            with gr.Row():
                strategy_type = gr.Radio(
                    choices=[
                        "Direct (no special technique)",
                        "Chain-of-thought (step-by-step reasoning)",
                        "Role-based (uses system prompt)",
                        "Combined (role + chain-of-thought)"
                    ],
                    label="Prompting Strategy",
                    value="Direct (no special technique)",
                    info="Choose how the model should approach the task"
                )
            
            with gr.Row():
                system_role = gr.Dropdown(
                    choices=[
                        "None",
                        "Technical analyst",
                        "Creative assistant"
                    ],
                    label="System Role (for role-based strategies)",
                    value="None",
                    info="Only applies if you selected a role-based strategy"
                )
            
            with gr.Row():
                assignment_temp = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.5,
                    step=0.1,
                    label="Temperature (0.1 = focused, 1.0 = creative)"
                )
            
            with gr.Row():
                generate_assignment = gr.Button("Generate Response", variant="primary")
            
            with gr.Row():
                assignment_output = gr.Textbox(
                    label="Model Output",
                    lines=12
                )
            
            with gr.Row():
                assignment_info = gr.Textbox(
                    label="Strategy Applied",
                    lines=3,
                    info="Documents which settings were used for this experiment"
                )

            generate_assignment.click(
                handle_assignment_experiment,
                inputs=[assignment_text, assignment_file, assignment_task, strategy_type, system_role, assignment_temp],
                outputs=[assignment_output, assignment_info]
            )
        # with gr.Tab("Week 8: Error Detection"):
        #     # Week 8 content here
        #     pass

        with gr.Tab("Week 9: Evaluation & Quality Assessment"):
            gr.Markdown("# Evaluation & Quality Assessment")
            gr.Markdown("Practice evaluating LLM outputs using techniques from today's lecture")
            
            with gr.Tabs() as week9_tabs:
                
                with gr.Tab("Human Evaluation"):
                    gr.Markdown("""
                    ### Generate Multiple Versions for Comparison
                    Create three versions of a response with different temperature settings. 
                    Then rate each output to practice human evaluation.
                    """)
                    
                    with gr.Row():
                        eval_prompt = gr.Textbox(
                            label="Enter your prompt",
                            placeholder="e.g., Summarise the main benefits of cloud computing for small businesses",
                            lines=3,
                            value="Write three different, creative metaphors to explain the concept of a neural network to a child."
                        )
                    
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("**Temperature Settings:**")
                            eval_temp1 = gr.Slider(
                                minimum=0.1,
                                maximum=1.0,
                                value=0.3,
                                step=0.1,
                                label="Version 1 Temperature (Focused)"
                            )
                            eval_temp2 = gr.Slider(
                                minimum=0.1,
                                maximum=1.0,
                                value=0.7,
                                step=0.1,
                                label="Version 2 Temperature (Balanced)"
                            )
                            eval_temp3 = gr.Slider(
                                minimum=0.1,
                                maximum=1.0,
                                value=1.0,
                                step=0.1,
                                label="Version 3 Temperature (Creative)"
                            )
                    
                    with gr.Row():
                        generate_eval_btn = gr.Button("Generate 3 Versions", variant="primary")
                    
                    gr.Markdown("### Compare and Rate the Outputs")
                    
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("**Version 1** (Temp: 0.3)")
                            eval_output1 = gr.Textbox(
                                label="Output 1",
                                lines=6,
                                # interactive=False
                            )
                            gr.Markdown("**Rate this output (1=Poor, 5=Excellent):**")
                            with gr.Row():
                                rate1_accuracy = gr.Slider(1, 5, value=3, step=1, label="Accuracy")
                                rate1_coherence = gr.Slider(1, 5, value=3, step=1, label="Coherence")
                            with gr.Row():
                                rate1_completeness = gr.Slider(1, 5, value=3, step=1, label="Completeness")
                                rate1_relevance = gr.Slider(1, 5, value=3, step=1, label="Relevance")
                        
                        with gr.Column():
                            gr.Markdown("**Version 2** (Temp: 0.7)")
                            eval_output2 = gr.Textbox(
                                label="Output 2",
                                lines=6,
                                # interactive=False
                            )
                            gr.Markdown("**Rate this output (1=Poor, 5=Excellent):**")
                            with gr.Row():
                                rate2_accuracy = gr.Slider(1, 5, value=3, step=1, label="Accuracy")
                                rate2_coherence = gr.Slider(1, 5, value=3, step=1, label="Coherence")
                            with gr.Row():
                                rate2_completeness = gr.Slider(1, 5, value=3, step=1, label="Completeness")
                                rate2_relevance = gr.Slider(1, 5, value=3, step=1, label="Relevance")
                        
                        with gr.Column():
                            gr.Markdown("**Version 3** (Temp: 1.0)")
                            eval_output3 = gr.Textbox(
                                label="Output 3",
                                lines=6,
                                # interactive=False
                            )
                            gr.Markdown("**Rate this output (1=Poor, 5=Excellent):**")
                            with gr.Row():
                                rate3_accuracy = gr.Slider(1, 5, value=3, step=1, label="Accuracy")
                                rate3_coherence = gr.Slider(1, 5, value=3, step=1, label="Coherence")
                            with gr.Row():
                                rate3_completeness = gr.Slider(1, 5, value=3, step=1, label="Completeness")
                                rate3_relevance = gr.Slider(1, 5, value=3, step=1, label="Relevance")
                    
                    with gr.Row():
                        calculate_ratings_btn = gr.Button("Calculate Average Ratings")
                    
                    with gr.Row():
                        ratings_summary = gr.Textbox(
                            label="Ratings Summary",
                            lines=6,
                            # interactive=False
                        )
                with gr.Tab("Automatic Evaluation"):
                    gr.Markdown("""
                    ### Generate a Response and Compare to Your Reference Answer
                    
                    This demonstrates how automatic metrics like BLEU and word overlap work in practice.
                    You'll provide a "reference answer" (what a good response should say), then see how
                    the model's response compares using automatic metrics.
                    """)
                    
                    with gr.Row():
                        metric_prompt = gr.Textbox(
                            label="Enter your prompt (question or task)",
                            placeholder="e.g., What are the main benefits of using a relational database?",
                            lines=3,
                            value="What are the three main principles of user-centered design?"
                        )
                    
                    with gr.Row():
                        metric_reference = gr.Textbox(
                            label="Enter your reference answer (what a good answer should include)",
                            placeholder="Write what you consider a good/correct answer to your prompt...",
                            lines=5,
                            value="The three main principles of user-centered design are: 1) Focus on users and their needs throughout the design process, 2) Involve users early and often through testing and feedback, and 3) Iterate designs based on user feedback to continuously improve the experience."
                        )
                    
                    with gr.Row():
                        metric_temp = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.7,
                            step=0.1,
                            label="Temperature"
                        )
                    
                    with gr.Row():
                        generate_metric_btn = gr.Button("Generate Model Response & Calculate Metrics", variant="primary")
                    
                    gr.Markdown("### Model Response")
                    
                    with gr.Row():
                        metric_generated = gr.Textbox(
                            label="Generated Answer (model's response)",
                            lines=6,
                            # interactive=False
                        )
                    
                    gr.Markdown("### Evaluation Metrics")
                    
                    with gr.Row():
                        with gr.Column():
                            metric_overlap_display = gr.Textbox(
                                label="Word Overlap",
                                lines=1,
                                # interactive=False
                            )
                        with gr.Column():
                            gr.Markdown("**Quick Summary:** This shows the % of reference words that appear in the generated response")
                    
                    with gr.Row():
                        metric_report = gr.Textbox(
                            label="Detailed Metrics Report",
                            lines=18,
                            # interactive=False
                        )
                    
                    gr.Markdown("""
                    ### Understanding the Metrics
                    
                    **Word Overlap:** What % of words from your reference appear in the generated response?
                    - Shows which words matched, which were missing, which were added
                    - High overlap = similar vocabulary used
                    
                    **BLEU Score:** Modified word overlap that penalises very short responses
                    - Used commonly for translation and summarisation
                    - Ranges roughly 0-100 (higher = more overlap)
                    
                    **Important Limitations:**
                    - These metrics only measure word overlap, NOT meaning or quality
                    - A response with low overlap might still be correct (using synonyms)
                    - A response with high overlap might still be wrong (same words, wrong meaning)
                    - Always use human judgment alongside automatic metrics!
                    """)
                
            
            def update_consistency_visibility(num_runs):
                """Show/hide output boxes based on number of runs"""
                num_runs = int(num_runs)
                return (
                    gr.update(visible=True),  # output1 always visible
                    gr.update(visible=True),  # output2 always visible
                    gr.update(visible=True),  # output3 always visible
                    gr.update(visible=(num_runs >= 4)),  # output4
                    gr.update(visible=(num_runs >= 5))   # output5
                )
            
            generate_eval_btn.click(
                generate_three_versions,
                inputs=[eval_prompt, eval_temp1, eval_temp2, eval_temp3],
                outputs=[eval_output1, eval_output2, eval_output3]
            )
            
            calculate_ratings_btn.click(
                calculate_rating_summary,
                inputs=[
                    rate1_accuracy, rate1_coherence, rate1_completeness, rate1_relevance,
                    rate2_accuracy, rate2_coherence, rate2_completeness, rate2_relevance,
                    rate3_accuracy, rate3_coherence, rate3_completeness, rate3_relevance
                ],
                outputs=[ratings_summary]
            )
            
            generate_metric_btn.click(
                generate_and_compare,
                inputs=[metric_prompt, metric_reference, metric_temp],
                outputs=[metric_generated, metric_report, metric_overlap_display]
            )

    demo.launch()