Spaces:
No application file
No application file
| # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from polygraphy.backend.trt import EngineFromNetwork, TrtRunner | |
| from torch import nn | |
| import tensorrt_llm | |
| from tensorrt_llm import Module, Tensor | |
| class TorchMLP(nn.Module): | |
| def __init__(self, hidden_size, ffn_hidden_size, bias=True): | |
| super().__init__() | |
| self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias) | |
| self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias) | |
| def forward(self, hidden_states): | |
| inter = self.fc(hidden_states) | |
| inter = nn.functional.relu(inter) | |
| output = self.proj(inter) | |
| return output, inter | |
| class MLP(Module): | |
| def __init__(self, | |
| hidden_size, | |
| ffn_hidden_size, | |
| bias=True, | |
| tp_group=None, | |
| tp_size=1): | |
| super().__init__() | |
| self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size, | |
| ffn_hidden_size, | |
| bias=bias, | |
| tp_group=tp_group, | |
| tp_size=tp_size, | |
| gather_output=False) | |
| self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size, | |
| hidden_size, | |
| bias=bias, | |
| tp_group=tp_group, | |
| tp_size=tp_size) | |
| def forward(self, hidden_states): | |
| inter = self.fc(hidden_states) | |
| inter = tensorrt_llm.functional.relu(inter) | |
| self.register_network_output('inter', inter) | |
| output = self.proj(inter) | |
| return output | |
| class TestDebuggingAPI(unittest.TestCase): | |
| def setUp(self): | |
| tensorrt_llm.logger.set_level('error') | |
| def test_debugging_api(self): | |
| # test data | |
| dtype = 'float32' | |
| hidden_size = 768 | |
| x_data = torch.randn(2, 16, hidden_size) | |
| tm = TorchMLP(hidden_size=hidden_size, | |
| ffn_hidden_size=hidden_size * 4, | |
| bias=False) | |
| # construct trt network | |
| builder = tensorrt_llm.Builder() | |
| net = builder.create_network() | |
| with tensorrt_llm.net_guard(net): | |
| x = Tensor(name='x', | |
| shape=x_data.shape, | |
| dtype=tensorrt_llm.str_dtype_to_trt(dtype)) | |
| gm = MLP(hidden_size=hidden_size, | |
| ffn_hidden_size=4 * hidden_size, | |
| bias=False) | |
| gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy() | |
| gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy() | |
| output = gm.forward(x) | |
| net._mark_output(output, 'output', | |
| tensorrt_llm.str_dtype_to_trt(dtype)) | |
| for k, v in gm.named_network_outputs(): | |
| net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype)) | |
| # trt run | |
| build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) | |
| with TrtRunner(build_engine) as runner: | |
| outputs = runner.infer(feed_dict={'x': x_data.numpy()}) | |
| # pytorch run | |
| with torch.no_grad(): | |
| ref1, ref2 = tm(x_data) | |
| # compare diff | |
| np.testing.assert_allclose(ref1.cpu().numpy(), | |
| outputs['output'], | |
| atol=1e-5) | |
| np.testing.assert_allclose(ref2.cpu().numpy(), | |
| outputs['inter'], | |
| atol=1e-5) | |