Spaces:
Sleeping
Sleeping
| # Download test image. | |
| from PIL import Image | |
| from io import BytesIO | |
| from IPython.display import Image as IPImage, display | |
| from huggingface_hub import from_pretrained_keras | |
| import tensorflow as tf | |
| # Download sample image | |
| !wget -nc -q https://storage.googleapis.com/dx-scin-public-data/dataset/images/3445096909671059178.png | |
| # Load the image | |
| img = Image.open("3445096909671059178.png") | |
| buf = BytesIO() | |
| img.convert('RGB').save(buf, 'PNG') | |
| image_bytes = buf.getvalue() | |
| # Format input | |
| input_tensor= tf.train.Example(features=tf.train.Features( | |
| feature={'image/encoded': tf.train.Feature( | |
| bytes_list=tf.train.BytesList(value=[image_bytes])) | |
| })).SerializeToString() | |
| # Load the model directly from Hugging Face Hub | |
| loaded_model = from_pretrained_keras("google/derm-foundation") | |
| # Call inference | |
| infer = loaded_model.signatures["serving_default"] | |
| output = infer(inputs=tf.constant([input_tensor])) | |
| # Extract the embedding vector | |
| embedding_vector = output['embedding'].numpy().flatten() | |