Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, io, requests, time
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
API_URL = "https://api-inference.huggingface.co/tuphamdf/skincare-detection"
|
| 6 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
| 7 |
+
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
|
| 8 |
+
|
| 9 |
+
def analyze(image):
|
| 10 |
+
if image is None:
|
| 11 |
+
return "Δεν δόθηκε εικόνα."
|
| 12 |
+
|
| 13 |
+
# Downscale για ταχύτητα
|
| 14 |
+
image = image.copy()
|
| 15 |
+
image.thumbnail((1024, 1024))
|
| 16 |
+
|
| 17 |
+
buf = io.BytesIO()
|
| 18 |
+
image.save(buf, format="JPEG", quality=90)
|
| 19 |
+
data = buf.getvalue()
|
| 20 |
+
|
| 21 |
+
# Απλό retry αν το μοντέλο “ζεσταίνεται”
|
| 22 |
+
for i in range(3):
|
| 23 |
+
r = requests.post(API_URL, headers=HEADERS, data=data, timeout=60)
|
| 24 |
+
if r.status_code == 503:
|
| 25 |
+
time.sleep(2*(i+1))
|
| 26 |
+
continue
|
| 27 |
+
r.raise_for_status()
|
| 28 |
+
break
|
| 29 |
+
|
| 30 |
+
preds = r.json()
|
| 31 |
+
try:
|
| 32 |
+
top = sorted(preds, key=lambda x: x.get("score", 0), reverse=True)[:3]
|
| 33 |
+
except Exception:
|
| 34 |
+
return f"Μη αναμενόμενη απόκριση API: {preds}"
|
| 35 |
+
|
| 36 |
+
labels = [p["label"].lower() for p in top if "label" in p]
|
| 37 |
+
recos = []
|
| 38 |
+
if any("acne" in l or "pimple" in l for l in labels):
|
| 39 |
+
recos.append("Ήπιος καθαρισμός + BHA 1–2x/εβδ.")
|
| 40 |
+
if any("red" in l or "rosacea" in l or "erythema" in l for l in labels):
|
| 41 |
+
recos.append("Serum με niacinamide/centella (soothing).")
|
| 42 |
+
if any("dry" in l or "xerosis" in l for l in labels):
|
| 43 |
+
recos.append("Ενυδάτωση με ceramides + hyaluronic acid.")
|
| 44 |
+
if not recos:
|
| 45 |
+
recos.append("Βασική ρουτίνα: gentle cleanser, ενυδατική, SPF.")
|
| 46 |
+
|
| 47 |
+
result_lines = [f"{p['label']}: {p['score']:.1%}" for p in top if "label" in p]
|
| 48 |
+
return (
|
| 49 |
+
"Ανάλυση (top-3):\n- " + "\n- ".join(result_lines) +
|
| 50 |
+
"\n\nΠροτάσεις:\n- " + "\n- ".join(recos) +
|
| 51 |
+
"\n\n⚠️ MVP επίδειξης — όχι ιατρική διάγνωση."
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
fn=analyze,
|
| 56 |
+
inputs=gr.Image(type="pil", sources=["upload","webcam"], label="Ανέβασε ή τράβηξε φωτογραφία"),
|
| 57 |
+
outputs=gr.Textbox(label="Αποτέλεσμα"),
|
| 58 |
+
title="AI Skin Analyzer (MVP)",
|
| 59 |
+
description="Ανάλυση δέρματος με Hugging Face Inference API (demo)."
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
if __name__ == "__main__":
|
| 63 |
+
demo.launch()
|