Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| """ | |
| Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
| Usage - sources: | |
| $ python detect.py --weights yolov5s.pt --source 0 # webcam | |
| img.jpg # image | |
| vid.mp4 # video | |
| screen # screenshot | |
| path/ # directory | |
| list.txt # list of images | |
| list.streams # list of streams | |
| 'path/*.jpg' # glob | |
| 'https://youtu.be/LNwODJXcvt4' # YouTube | |
| 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | |
| Usage - formats: | |
| $ python detect.py --weights yolov5s.pt # PyTorch | |
| yolov5s.torchscript # TorchScript | |
| yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
| yolov5s_openvino_model # OpenVINO | |
| yolov5s.engine # TensorRT | |
| yolov5s.mlpackage # CoreML (macOS-only) | |
| yolov5s_saved_model # TensorFlow SavedModel | |
| yolov5s.pb # TensorFlow GraphDef | |
| yolov5s.tflite # TensorFlow Lite | |
| yolov5s_edgetpu.tflite # TensorFlow Edge TPU | |
| yolov5s_paddle_model # PaddlePaddle | |
| """ | |
| import argparse | |
| import csv | |
| import os | |
| import platform | |
| import sys | |
| from pathlib import Path | |
| import torch | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[0] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
| from ultralytics.utils.plotting import Annotator, colors, save_one_box | |
| from models.common import DetectMultiBackend | |
| from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams | |
| from utils.general import ( | |
| LOGGER, | |
| Profile, | |
| check_file, | |
| check_img_size, | |
| check_imshow, | |
| check_requirements, | |
| colorstr, | |
| cv2, | |
| increment_path, | |
| non_max_suppression, | |
| print_args, | |
| scale_boxes, | |
| strip_optimizer, | |
| xyxy2xywh, | |
| ) | |
| from utils.torch_utils import select_device, smart_inference_mode | |
| def run( | |
| weights=ROOT / "yolov5s.pt", # model path or triton URL | |
| source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) | |
| data=ROOT / "data/coco128.yaml", # dataset.yaml path | |
| imgsz=(640, 640), # inference size (height, width) | |
| conf_thres=0.25, # confidence threshold | |
| iou_thres=0.45, # NMS IOU threshold | |
| max_det=1000, # maximum detections per image | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| view_img=False, # show results | |
| save_txt=False, # save results to *.txt | |
| save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC) | |
| save_csv=False, # save results in CSV format | |
| save_conf=False, # save confidences in --save-txt labels | |
| save_crop=False, # save cropped prediction boxes | |
| nosave=False, # do not save images/videos | |
| classes=None, # filter by class: --class 0, or --class 0 2 3 | |
| agnostic_nms=False, # class-agnostic NMS | |
| augment=False, # augmented inference | |
| visualize=False, # visualize features | |
| update=False, # update all models | |
| project=ROOT / "runs/detect", # save results to project/name | |
| name="exp", # save results to project/name | |
| exist_ok=False, # existing project/name ok, do not increment | |
| line_thickness=3, # bounding box thickness (pixels) | |
| hide_labels=False, # hide labels | |
| hide_conf=False, # hide confidences | |
| half=False, # use FP16 half-precision inference | |
| dnn=False, # use OpenCV DNN for ONNX inference | |
| vid_stride=1, # video frame-rate stride | |
| ): | |
| """ | |
| Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc. | |
| Args: | |
| weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'. | |
| source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam | |
| index. Default is 'data/images'. | |
| data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'. | |
| imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640). | |
| conf_thres (float): Confidence threshold for detections. Default is 0.25. | |
| iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45. | |
| max_det (int): Maximum number of detections per image. Default is 1000. | |
| device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the | |
| best available device. | |
| view_img (bool): If True, display inference results using OpenCV. Default is False. | |
| save_txt (bool): If True, save results in a text file. Default is False. | |
| save_csv (bool): If True, save results in a CSV file. Default is False. | |
| save_conf (bool): If True, include confidence scores in the saved results. Default is False. | |
| save_crop (bool): If True, save cropped prediction boxes. Default is False. | |
| nosave (bool): If True, do not save inference images or videos. Default is False. | |
| classes (list[int]): List of class indices to filter detections by. Default is None. | |
| agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False. | |
| augment (bool): If True, use augmented inference. Default is False. | |
| visualize (bool): If True, visualize feature maps. Default is False. | |
| update (bool): If True, update all models' weights. Default is False. | |
| project (str | Path): Directory to save results. Default is 'runs/detect'. | |
| name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'. | |
| exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is | |
| False. | |
| line_thickness (int): Thickness of bounding box lines in pixels. Default is 3. | |
| hide_labels (bool): If True, do not display labels on bounding boxes. Default is False. | |
| hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False. | |
| half (bool): If True, use FP16 half-precision inference. Default is False. | |
| dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False. | |
| vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1. | |
| Returns: | |
| None | |
| Examples: | |
| ```python | |
| from ultralytics import run | |
| # Run inference on an image | |
| run(source='data/images/example.jpg', weights='yolov5s.pt', device='0') | |
| # Run inference on a video with specific confidence threshold | |
| run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0') | |
| ``` | |
| """ | |
| source = str(source) | |
| save_img = not nosave and not source.endswith(".txt") # save inference images | |
| is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) | |
| is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) | |
| webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) | |
| screenshot = source.lower().startswith("screen") | |
| if is_url and is_file: | |
| source = check_file(source) # download | |
| # Directories | |
| save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | |
| (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | |
| # Load model | |
| device = select_device(device) | |
| model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) | |
| stride, names, pt = model.stride, model.names, model.pt | |
| imgsz = check_img_size(imgsz, s=stride) # check image size | |
| # Dataloader | |
| bs = 1 # batch_size | |
| if webcam: | |
| view_img = check_imshow(warn=True) | |
| dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) | |
| bs = len(dataset) | |
| elif screenshot: | |
| dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) | |
| else: | |
| dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) | |
| vid_path, vid_writer = [None] * bs, [None] * bs | |
| # Run inference | |
| model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup | |
| seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device)) | |
| for path, im, im0s, vid_cap, s in dataset: | |
| with dt[0]: | |
| im = torch.from_numpy(im).to(model.device) | |
| im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 | |
| im /= 255 # 0 - 255 to 0.0 - 1.0 | |
| if len(im.shape) == 3: | |
| im = im[None] # expand for batch dim | |
| if model.xml and im.shape[0] > 1: | |
| ims = torch.chunk(im, im.shape[0], 0) | |
| # Inference | |
| with dt[1]: | |
| visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False | |
| if model.xml and im.shape[0] > 1: | |
| pred = None | |
| for image in ims: | |
| if pred is None: | |
| pred = model(image, augment=augment, visualize=visualize).unsqueeze(0) | |
| else: | |
| pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0) | |
| pred = [pred, None] | |
| else: | |
| pred = model(im, augment=augment, visualize=visualize) | |
| # NMS | |
| with dt[2]: | |
| pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) | |
| # Second-stage classifier (optional) | |
| # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) | |
| # Define the path for the CSV file | |
| csv_path = save_dir / "predictions.csv" | |
| # Create or append to the CSV file | |
| def write_to_csv(image_name, prediction, confidence): | |
| """Writes prediction data for an image to a CSV file, appending if the file exists.""" | |
| data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence} | |
| file_exists = os.path.isfile(csv_path) | |
| with open(csv_path, mode="a", newline="") as f: | |
| writer = csv.DictWriter(f, fieldnames=data.keys()) | |
| if not file_exists: | |
| writer.writeheader() | |
| writer.writerow(data) | |
| # Process predictions | |
| for i, det in enumerate(pred): # per image | |
| seen += 1 | |
| if webcam: # batch_size >= 1 | |
| p, im0, frame = path[i], im0s[i].copy(), dataset.count | |
| s += f"{i}: " | |
| else: | |
| p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) | |
| p = Path(p) # to Path | |
| save_path = str(save_dir / p.name) # im.jpg | |
| txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt | |
| s += "{:g}x{:g} ".format(*im.shape[2:]) # print string | |
| gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
| imc = im0.copy() if save_crop else im0 # for save_crop | |
| annotator = Annotator(im0, line_width=line_thickness, example=str(names)) | |
| if len(det): | |
| # Rescale boxes from img_size to im0 size | |
| det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() | |
| # Print results | |
| for c in det[:, 5].unique(): | |
| n = (det[:, 5] == c).sum() # detections per class | |
| s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
| # Write results | |
| for *xyxy, conf, cls in reversed(det): | |
| c = int(cls) # integer class | |
| label = names[c] if hide_conf else f"{names[c]}" | |
| confidence = float(conf) | |
| confidence_str = f"{confidence:.2f}" | |
| if save_csv: | |
| write_to_csv(p.name, label, confidence_str) | |
| if save_txt: # Write to file | |
| if save_format == 0: | |
| coords = ( | |
| (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() | |
| ) # normalized xywh | |
| else: | |
| coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy | |
| line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format | |
| with open(f"{txt_path}.txt", "a") as f: | |
| f.write(("%g " * len(line)).rstrip() % line + "\n") | |
| if save_img or save_crop or view_img: # Add bbox to image | |
| c = int(cls) # integer class | |
| label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}") | |
| annotator.box_label(xyxy, label, color=colors(c, True)) | |
| if save_crop: | |
| save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True) | |
| # Stream results | |
| im0 = annotator.result() | |
| if view_img: | |
| if platform.system() == "Linux" and p not in windows: | |
| windows.append(p) | |
| cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) | |
| cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) | |
| cv2.imshow(str(p), im0) | |
| cv2.waitKey(1) # 1 millisecond | |
| # Save results (image with detections) | |
| if save_img: | |
| if dataset.mode == "image": | |
| cv2.imwrite(save_path, im0) | |
| else: # 'video' or 'stream' | |
| if vid_path[i] != save_path: # new video | |
| vid_path[i] = save_path | |
| if isinstance(vid_writer[i], cv2.VideoWriter): | |
| vid_writer[i].release() # release previous video writer | |
| if vid_cap: # video | |
| fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
| w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| else: # stream | |
| fps, w, h = 30, im0.shape[1], im0.shape[0] | |
| save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos | |
| vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) | |
| vid_writer[i].write(im0) | |
| # Print time (inference-only) | |
| LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms") | |
| # Print results | |
| t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image | |
| LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t) | |
| if save_txt or save_img: | |
| s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" | |
| LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
| if update: | |
| strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) | |
| def parse_opt(): | |
| """ | |
| Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations. | |
| Args: | |
| --weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'. | |
| --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'. | |
| --data (str, optional): Dataset YAML path. Provides dataset configuration information. | |
| --imgsz (list[int], optional): Inference size (height, width). Defaults to [640]. | |
| --conf-thres (float, optional): Confidence threshold. Defaults to 0.25. | |
| --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45. | |
| --max-det (int, optional): Maximum number of detections per image. Defaults to 1000. | |
| --device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "". | |
| --view-img (bool, optional): Flag to display results. Defaults to False. | |
| --save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False. | |
| --save-csv (bool, optional): Flag to save results in CSV format. Defaults to False. | |
| --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False. | |
| --save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False. | |
| --nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False. | |
| --classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None. | |
| --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False. | |
| --augment (bool, optional): Flag for augmented inference. Defaults to False. | |
| --visualize (bool, optional): Flag for visualizing features. Defaults to False. | |
| --update (bool, optional): Flag to update all models in the model directory. Defaults to False. | |
| --project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'. | |
| --name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'. | |
| --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False. | |
| --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3. | |
| --hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False. | |
| --hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False. | |
| --half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False. | |
| --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False. | |
| --vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between | |
| consecutive frames. Defaults to 1. | |
| Returns: | |
| argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object. | |
| Example: | |
| ```python | |
| from ultralytics import YOLOv5 | |
| args = YOLOv5.parse_opt() | |
| ``` | |
| """ | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL") | |
| parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)") | |
| parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path") | |
| parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") | |
| parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold") | |
| parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold") | |
| parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image") | |
| parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") | |
| parser.add_argument("--view-img", action="store_true", help="show results") | |
| parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") | |
| parser.add_argument( | |
| "--save-format", | |
| type=int, | |
| default=0, | |
| help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC", | |
| ) | |
| parser.add_argument("--save-csv", action="store_true", help="save results in CSV format") | |
| parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") | |
| parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes") | |
| parser.add_argument("--nosave", action="store_true", help="do not save images/videos") | |
| parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3") | |
| parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS") | |
| parser.add_argument("--augment", action="store_true", help="augmented inference") | |
| parser.add_argument("--visualize", action="store_true", help="visualize features") | |
| parser.add_argument("--update", action="store_true", help="update all models") | |
| parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name") | |
| parser.add_argument("--name", default="exp", help="save results to project/name") | |
| parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") | |
| parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)") | |
| parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels") | |
| parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences") | |
| parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") | |
| parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") | |
| parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride") | |
| opt = parser.parse_args() | |
| opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| """ | |
| Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running. | |
| Args: | |
| opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details. | |
| Returns: | |
| None | |
| Note: | |
| This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified | |
| options. Refer to the usage guide and examples for more information about different sources and formats at: | |
| https://github.com/ultralytics/ultralytics | |
| Example usage: | |
| ```python | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |
| ``` | |
| """ | |
| check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) | |
| run(**vars(opt)) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |